6 research outputs found

    ADAPTATION OF LEAN PRODUCTION TOOLS TO EDUCATIONAL ACTIVITIES OF UNIVERSITIES

    Get PDF
    O uso de tecnologias enxutas pode melhorar a qualidade dos serviços e a eficiência dos gastos com recursos disponíveis, estimular o desenvolvimento da economia do país e melhorar o padrão de vida da população. As autoridades prestam especial atenção à modernização do ensino superior. Nesse sentido, é aconselhável introduzir tecnologias enxutas no processo educacional das instituições de ensino superior, o que nos permitirá identificar e desenvolver a capacidade dessas estruturas de auto- desenvolvimento, não apenas devido ao influxo de informações e finanças externas, mas através do uso de suas fontes internas. A introdução de princípios de produção enxuta nas atividades das universidades pode ajudar a aumentar a eficiência do processo educacional e sua competitividade. Com base nisso, o artigo discute o processo de introdução de ferramentas de manufatura enxuta nas atividades educacionais. É feita uma tentativa de analisar ferramentas de manufatura comparativamente enxutas e a possibilidade de sua aplicação nas atividades educacionais da universidade. O artigo enfatiza que a replicação da experiência existente na implementação de ferramentas de manufatura enxuta garantirá um crescimento constante dos principais indicadores de desempenho e permitirá a formação de um modelo enxuto sustentável de comportamento da população com base na popularização da cultura de economia entre os estudantes.El uso de tecnologías lean puede mejorar la calidad de los servicios y la eficiencia del gasto en recursos disponibles, estimular el desarrollo de la economía del país y mejorar el nivel de vida de la población. Las autoridades prestan especial atención a la modernización de la educación superior. En este sentido, es aconsejable introducir tecnologías lean en el proceso educativo de las instituciones de educación superior, lo que nos permitirá identificar y desarrollar la capacidad de estas estructuras para el autodesarrollo no solo debido a la entrada de información y las finanzas externas, sino a través del uso de sus fuentes internas. La introducción de principios de producción ajustada en las actividades de las universidades puede ayudar a aumentar la eficiencia del proceso educativo y su competitividad. Basado en esto, el artículo discute el proceso de introducción de herramientas de manufactura esbelta en actividades educativas. Se intenta analizar herramientas de fabricación comparativamente esbeltas y la posibilidad de su aplicación en las actividades educativas de la universidad. El artículo enfatiza que la replicación de la experiencia existente en la implementación de herramientas de manufactura esbelta asegurará un crecimiento constante de los indicadores clave de desempeño y permitirá la formación de un modelo lean sostenible de comportamiento poblacional basado en la popularización de la cultura del "ahorro" entre los estudiantes.The use of lean technologies can improve the quality of services and the efficiency of available resource spending, stimulate the development of the country economy and improve the living standards of the population. Authorities pay particular attention to the modernization of higher education. In this regard, it is advisable to introduce lean technologies in the educational process of higher educational institutions, which will allow us to identify and develop the ability of these structures to self-development not only due to the influx of information and external finances, but through the use of their internal sources. The introduction of lean production principles in the activities of universities can help increase the efficiency of the educational process and their competitiveness. Based on this, the article discusses the process of lean manufacturing tool introduction into educational activities. An attempt is made to analyze comparatively lean manufacturing tools and the possibility of their application in the educational activities of the university. The article emphasizes that the replication of existing experience of lean manufacturing tool implementation will ensure a steady growth of key performance indicators and will allow the formation of a sustainable lean model of population behavior based on the popularization of the culture of “thrift” among students

    Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers

    No full text
    In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures—pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers

    Phase Evolution from Volborthite, Cu3(V2O7)(OH)2·2H2O, upon Heat Treatment

    No full text
    In the experiments on volborthite in situ and ex situ heating, analogues of all known natural anhydrous copper vanadates have been obtained: ziesite, pseudolyonsite, mcbirneyite, fingerite, stoiberite and blossite, with the exception of borisenkoite, which requires the presence of As in the V site. The evolution of Cu-V minerals during in situ heating is as follows: volborthite Cu3(V2O7)(OH)2·2H2O (30–230 °C) → X-ray amorphous phase (230–290 °C) → ziesite β-Cu2(V2O7) (290–430 °C) → ziesite + pseudolyonsite α-Cu3(VO4)2 + mcbirneyite β-Cu3(VO4)2 (430–510 °C) → mcbirneyite (510–750 °C). This trend of mineral evolution agrees with the thermal analytical data. These phases also dominate in all experiments with an ex situ annealing. However, the phase compositions of the samples annealed ex situ are more complex: fingerite Cu11(VO4)6O2 occurs in the samples annealed at ~250 and ~480 °C and quickly or slowly cooled to room temperature, and in the sample annealed at ~850 °C with fast cooling. At the same time, blossite and stoiberite have been found in the samples annealed at ~480–780 and ~780–850 °C, respectively, and slowly cooled to room temperature. There is a trend of decreasing crystal structure complexity in the raw phases obtained by the in situ heating with the increasing temperature: volborthite → ziesite → mcbirneyite (except of pseudolyonsite). Another tendency is that the longer the sample is cooled, the more complex the crystal structure that is formed, with the exception of blossite, most probably because blossite and ziesite are polymorphs with identical crystal structure complexities. The high complexity of fingerite and stoiberite, as well as their distinction by Cu:V ratio, may explain the uncertain conditions of their formation

    Phase Evolution from Volborthite, Cu<sub>3</sub>(V<sub>2</sub>O<sub>7</sub>)(OH)<sub>2</sub>·2H<sub>2</sub>O, upon Heat Treatment

    No full text
    In the experiments on volborthite in situ and ex situ heating, analogues of all known natural anhydrous copper vanadates have been obtained: ziesite, pseudolyonsite, mcbirneyite, fingerite, stoiberite and blossite, with the exception of borisenkoite, which requires the presence of As in the V site. The evolution of Cu-V minerals during in situ heating is as follows: volborthite Cu3(V2O7)(OH)2·2H2O (30–230 °C) → X-ray amorphous phase (230–290 °C) → ziesite β-Cu2(V2O7) (290–430 °C) → ziesite + pseudolyonsite α-Cu3(VO4)2 + mcbirneyite β-Cu3(VO4)2 (430–510 °C) → mcbirneyite (510–750 °C). This trend of mineral evolution agrees with the thermal analytical data. These phases also dominate in all experiments with an ex situ annealing. However, the phase compositions of the samples annealed ex situ are more complex: fingerite Cu11(VO4)6O2 occurs in the samples annealed at ~250 and ~480 °C and quickly or slowly cooled to room temperature, and in the sample annealed at ~850 °C with fast cooling. At the same time, blossite and stoiberite have been found in the samples annealed at ~480–780 and ~780–850 °C, respectively, and slowly cooled to room temperature. There is a trend of decreasing crystal structure complexity in the raw phases obtained by the in situ heating with the increasing temperature: volborthite → ziesite → mcbirneyite (except of pseudolyonsite). Another tendency is that the longer the sample is cooled, the more complex the crystal structure that is formed, with the exception of blossite, most probably because blossite and ziesite are polymorphs with identical crystal structure complexities. The high complexity of fingerite and stoiberite, as well as their distinction by Cu:V ratio, may explain the uncertain conditions of their formation

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore