73 research outputs found

    On the homotopy classification of elliptic operators on stratified manifolds

    Full text link
    We find the stable homotopy classification of elliptic operators on stratified manifolds. Namely, we establish an isomorphism of the set of elliptic operators modulo stable homotopy and the KK-homology group of the singular manifold. As a corollary, we obtain an explicit formula for the obstruction of Atiyah--Bott type to making interior elliptic operators Fredholm.Comment: 28 pages; submitted to Izvestiya Ross. Akad. Nau

    Wigner phase space distribution as a wave function

    Full text link
    We demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the Wigner function transforms into a classical Koopman-von Neumann wave function rather than into a classical probability distribution. Since probability amplitude need not be positive, our findings provide an alternative outlook on the Wigner function's negativity.Comment: 6 pages and 2 figure

    Uniformization and an Index Theorem for Elliptic Operators Associated with Diffeomorphisms of a Manifold

    Full text link
    We consider the index problem for a wide class of nonlocal elliptic operators on a smooth closed manifold, namely differential operators with shifts induced by the action of an isometric diffeomorphism. The key to the solution is the method of uniformization: We assign to the nonlocal problem a pseudodifferential operator with the same index, acting in sections of an infinite-dimensional vector bundle on a compact manifold. We then determine the index in terms of topological invariants of the symbol, using the Atiyah-Singer index theorem.Comment: 16 pages, no figure

    The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac type operators with classical boundary conditions

    Get PDF
    We compute, in topological terms, the spectral flow of an arbitrary family of self-adjoint Dirac type operators with classical (local) boundary conditions on a compact Riemannian manifold with boundary under the assumption that the initial and terminal operators of the family are conjugate by a bundle automorphism. This result is used to study conditions for the existence of nonzero spectral flow of a family of self-adjoint Dirac type operators with local boundary conditions in a two-dimensional domain with nontrivial topology. Possible physical realizations of nonzero spectral flow are discussed.Comment: 15 pages, 6 figures. Submitted to Theoretical and Mathematical Physics. v2: A change has been made to the paragraph describing the previous work of M. Prokhorov
    corecore