48 research outputs found

    An Integrated Architectural Element Approach to Three-Dimensional Geologic Mapping of the Huntertown Aquifer System In Northeastern Indiana

    Get PDF
    This poster was presented at the 2008 Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM, October 5-9, Houston, TX.A three-dimensional geologic model of the Huntertown glacial aquifer system is being developed. Permeable hydrostratigraphic units within the Huntertown Formation (Quaternary) comprise the principal ground-water resource for an expanding population in northern Allen County, Indiana. The Huntertown aquifer system lies predominantly between the less permeable Lagro and Trafalgar Formations. The Huntertown Formation and corresponding aquifer system are located in an interlobate setting characterized by complex glacial stratigraphy, consisting of coarse-grained proglacial sediments and loamy till intercalated with glaciofluvial and glaciolacustrine facies. To construct the model, a database of more than 2,500 lithologic logs from public and private water supply wells and more than 200 down-hole natural gamma-ray logs was compiled for the study area (~500 km2). The lithologic logs were plotted to construct 110 hand-drawn cross sections (total length of about 900 km) that were used to map the bounding surfaces of the three formations (high-order architectural elements) as well as to constrain the scale and geometry of intratill sand and gravel aquifer units. The base of the Lagro Formation was determined from well logs by a shift from massive clays to loam-textured sediments or by the presence of laterally and vertically extensive underlying sand and gravel units. A prominent shift toward higher counts in natural gamma-ray profiles was also used to determine the base of the Lagro. The top of the Trafalgar Formation was defined by a ubiquitously present overlying outwash package depicted in gamma-ray logs or by lithologic descriptions reflecting the Trafalgar's overconsolidated nature. Previously mapped areal extents of hydrogeologic facies are currently being used in conjunction with both lithologic and natural gamma-ray cross sections, rendered at various orientations across the study area, to determine the geometry of individual morphosequences or lower-order architectural elements (e.g., ice marginal fans and outwash channels)

    Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Get PDF
    Poster presented at American Geophysical Union meeting in 2013.Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov–Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68% of recharge season precipitation, VWC RMSE=7.0%) predicting much greater drainage than HYDRUS (38% of recharge season precipitation, VWC RMSE=6.6%). Results also show that when calculating drainage flux over the recharge period, HYDRUS is highly sensitive to model initialization using observed water content from in-situ instrumentation. Simulated recharge season drainage flux is as much as 3.5 times higher when a one-month spin-up period was performed in the HYDRUS model for the same site. SWB results are less sensitive to water content initialization, but drainage flux is 1.6 times higher at one site using the same spin-up analysis. The long-term goals of this effort are to leverage the robust calibration data set to establish optimal approaches for determining hydraulic parameters such that water fluxes in the lower vadose zone can be modeled for a wider range of geomorphic settings where calibration data are unavailable

    Sibling Support Program: A Family-Centered Mental Health Initiative

    Get PDF
    Sibling Support Program: A Family-Centered Mental Health Initiative was developed at the Eunice Kennedy Shriver Center of the University of Massachusetts Medical School. The project is currently implemented at Cambridge Health Alliance in Cambridge, Massachusetts as an IRB-approved research study, and at another Boston-based hospital as a Quality Improvement (QI) initiative. The program was also piloted at Boston Children\u27s Hospital in Boston, Massachusetts. The project explores the impact of mental illness on typically developing siblings and caregivers of children with psychiatric needs. Project goals: to increase resiliency and mitigate the trauma commonly experienced by siblings of children admitted for psychiatric hospitalization; to build skills, competency and confidence among parents; to help restore family stability post-discharge; to build capacity among medical practitioners. Interventions include psycho-educational groups for caregivers, and sibling support groups for children growing up alongside the patient. Participants complete surveys following the intervention to report on knowledge learned, satisfaction level, and behavioral change anticipated by the participant. Over 1,500 participants have participated in this innovative program that utilizes parent mentors and medical trainees to deliver interventions, with high satisfaction scores among participants. Results suggest that a child\u27s mental illness can be traumatic for family members, and that sharing stories can alleviate the stress and anxiety related to living in a home with a child with mental illness. The program serves as a training rotation for psychiatry residents through Harvard Medical School

    The Characterization of Twenty Sequenced Human Genomes

    Get PDF
    We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten “case” genomes from individuals with severe hemophilia A and ten “control” genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways

    Sustainable and Equitable Increases in Fruit and Vegetable Productivity and Consumption are Needed to Achieve Global Nutrition Security

    Get PDF
    Increased intake of fruits and vegetables (F&V) is recommended for most populations across the globe. However, the current state of global and regional food systems is such that F&V availability, the production required to sustain them, and consumer food choices are all severely deficient to meet this need. Given the critical state of public health and nutrition worldwide, as well as the fragility of the ecological systems and resources on which they rely, there is a great need for research, investment, and innovation in F&V systems to nourish our global population. Here, we review the challenges that must be addressed in order to expand production and consumption of F&V sustainably and on a global scale. At the conclusion of the workshop, the gathered participants drafted the “Aspen/Keystone Declaration” (see below), which announces the formation of a new “Community of Practice,” whose area of work is described in this position paper. The need for this work is based on a series of premises discussed in detail at the workshop and summarized herein. To surmount these challenges, opportunities are presented for growth and innovation in F&V food systems. The paper is organized into five sections based on primary points of intervention in global F&V systems: (1) research and development, (2) information needs to better inform policy & investment, (3) production (farmers, farming practices, and supply), (4) consumption (availability, access, and demand), and (5) sustainable & equitable F&V food systems and supply chains

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore