8 research outputs found

    The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice.

    Get PDF
    The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr <sup>+/+</sup> vs Pxr <sup>-/-</sup> C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr <sup>+/+</sup> but not Pxr <sup>-/-</sup> male mice. These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract

    Insights into the role of hepatocyte PPARα activity in response to fasting.

    No full text
    The liver plays a central role in the regulation of fatty acid metabolism. Hepatocytes are highly sensitive to nutrients and hormones that drive extensive transcriptional responses. Nuclear hormone receptors are key transcription factors involved in this process. Among these factors, PPARα is a critical regulator of hepatic lipid catabolism during fasting. This study aimed to analyse the wide array of hepatic PPARα-dependent transcriptional responses during fasting. We compared gene expression in male mice with a hepatocyte specific deletion of PPARα and their wild-type littermates in the fed (ad libitum) and 24-h fasted states. Liver samples were acquired, and transcriptome and lipidome analyses were performed. Our data extended and confirmed the critical role of hepatocyte PPARα as a central for regulator of gene expression during starvation. Interestingly, we identified novel PPARα-sensitive genes, including Cxcl-10, Rab30, and Krt23. We also found that liver phospholipid remodelling was a novel fasting-sensitive pathway regulated by PPARα. These results may contribute to investigations on transcriptional control in hepatic physiology and underscore the clinical relevance of drugs that target PPARα in liver pathologies, such as non-alcoholic fatty liver disease

    Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity.

    Get PDF
    Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα <sup>-</sup> deficient mice (Pparα <sup>-/-</sup> ) and in mice lacking Pparα only in hepatocytes (Pparα <sup>hep-/-</sup> ). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis

    The hepatocyte insulin receptor is required to program the liver clock and rhythmic gene expression.

    No full text
    Liver physiology is circadian and sensitive to feeding and insulin. Food intake regulates insulin secretion and is a dominant signal for the liver clock. However, how much insulin contributes to the effect of feeding on the liver clock and rhythmic gene expression remains to be investigated. Insulin action partly depends on changes in insulin receptor (IR)-dependent gene expression. Here, we use hepatocyte-restricted gene deletion of IR to evaluate its role in the regulation and oscillation of gene expression as well as in the programming of the circadian clock in the adult mouse liver. We find that, in the absence of IR, the rhythmicity of core-clock gene expression is altered in response to day-restricted feeding. This change in core-clock gene expression is associated with defective reprogramming of liver gene expression. Our data show that an intact hepatocyte insulin receptor is required to program the liver clock and associated rhythmic gene expression

    The protective role of liver X receptor (LXR) during fumonisin B1-induced hepatotoxicity

    No full text
    International audienceFumonisin B1 (FB1), a congener of fumonisins produced by Fusarium species, is the most abundant and most toxicologically active fumonisin. FB1 causes severe mycotoxicosis in animals, including nephrotoxicity, hepatotoxicity, and disruption of the intestinal barrier. However, mechanisms associated with FB1 toxicity are still unclear. Preliminary studies have highlighted the role of liver X receptors (LXRs) during FB1 exposure. LXRs belong to the nuclear receptor family and control the expression of genes involved in cholesterol and lipid homeostasis. In this context, the toxicity of FB1 was compared in female wild-type (LXR+/+) and LXR, double knockout (LXR-/-) mice in the absence or presence of FB1 (10mg/kg body weight/day) for 28days. Exposure to FB1 supplemented in the mice's drinking water resulted in more pronounced hepatotoxicity in LXR-/- mice compared to LXR+/+ mice, as indicated by hepatic transaminase levels (ALT, AST) and hepatic inflammatory and fibrotic lesions. Next, the effect of FB1 exposure on the liver transcriptome was investigated. FB1 exposure led to a specific transcriptional response in LXR-/- mice that included altered cholesterol and bile acid homeostasis. ELISA showed that these effects were associated with an elevated FB1 concentration in the plasma of LXR-/- mice, suggesting that LXRs participate in intestinal absorption and/or clearance of the toxin. In summary, this study demonstrates an important role of LXRs in protecting the liver against FB1-induced toxicity, suggesting an alternative mechanism not related to the inhibition of sphingolipid synthesis for mycotoxin toxicity

    Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target.

    No full text
    We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. NCT02390232
    corecore