3 research outputs found

    Lokatt: a hybrid DNA nanopore basecaller with an explicit duration hidden Markov model and a residual LSTM network

    No full text
    Abstract Background Basecalling long DNA sequences is a crucial step in nanopore-based DNA sequencing protocols. In recent years, the CTC-RNN model has become the leading basecalling model, supplanting preceding hidden Markov models (HMMs) that relied on pre-segmenting ion current measurements. However, the CTC-RNN model operates independently of prior biological and physical insights. Results We present a novel basecaller named Lokatt: explicit duration Markov model and residual-LSTM network. It leverages an explicit duration HMM (EDHMM) designed to model the nanopore sequencing processes. Trained on a newly generated library with methylation-free Ecoli samples and MinION R9.4.1 chemistry, the Lokatt basecaller achieves basecalling performances with a median single read identity score of 0.930, a genome coverage ratio of 99.750%, on par with existing state-of-the-art structure when trained on the same datasets. Conclusion Our research underlines the potential of incorporating prior knowledge into the basecalling processes, particularly through integrating HMMs and recurrent neural networks. The Lokatt basecaller showcases the efficacy of a hybrid approach, emphasizing its capacity to achieve high-quality basecalling performance while accommodating the nuances of nanopore sequencing. These outcomes pave the way for advanced basecalling methodologies, with potential implications for enhancing the accuracy and efficiency of nanopore-based DNA sequencing protocols

    Spatial transcriptomics of human placentas reveal distinct RNA patterns associated with morphology and preeclampsia

    No full text
    Spatial transcriptomics (ST) maps RNA level patterns within a tissue. This technology has not been previously applied to human placental tissue. We demonstrate analysis of human placental samples with ST. Unsupervised clustering revealed that distinct RNA patterns were found corresponding to different morphological structures. Additionally, when focusing upon terminal villi and hemoglobin associated structures, RNA levels differed between placentas from full term healthy pregnancies and those complicated by preeclampsia. The results from this study can provide a benchmark for future ST studies in placenta.Susanne Lager and Patrik L. StÄhl are shared senior authors.</p

    An integrated single cell and spatial transcriptomic map of human white adipose tissue

    No full text
    To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.ISSN:2041-172
    corecore