1,790 research outputs found

    Flat grain beetle fumigation protocol

    Get PDF
    Flat grain beetle (FGB) is a major emergency plant pest (EPP) of stored grain in Australia. Populations of FGB have recently developed high level resistance to phosphine (the only viable fumigant available for non-quarantine use) resulting in control failures with current dosage regimes. As there is no practical alternative to phosphine, failure to control FGB with phosphine places at risk market access for Australian grain worth up to $7 billion in annual trade. Therefore there is an urgent need to develop appropriate phosphine fumigation protocols to eradicate outbreaks of strongly resistant FGB. Research outcomes: - Characterisation of high resistance to phosphine in flat grain beetles (FGB) for the first time internationally. - Establishment of fumigation protocols and an eradication strategy that will enable industry to eradicate infestations of phosphine-resistant flat grain beetle and prevent or delay further selection for resistance to phosphine. - Development of a rapid test to detect highly resistant FGB. -Facilitate continued market access of Australian grain

    Developing effective fumigation protocols to manage strongly phosphine-resistant Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae)

    Get PDF
    BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industr

    Developing effective fumigation protocols to manage strongly phosphine-resistant Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae)

    Get PDF
    BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industr

    Delivering a collaborative monitoring program with industry to manage and facilitate trade

    Get PDF
    The current project represents national resistance monitoring for a period of 12 months with the purpose of transitioning this important program to a long term, self-sustainable model and establishing an enduring legacy. The findings from this research are addendum to the previously submitted final report for project PBCRC3035. While new data on resistance spread and frequency for the period 2015-16 are presented here, the methodology remains the same and the response from the end-user advocate is quite similar to the previous one. The following are the highlights from the 2015-16 season. The project has been proven to be a highly successful program as the outputs from this form the basis for development and deployment of major pest and resistance management strategies

    Chemically reacting and radiating nanofluid flow past an exponentially stretching sheet in a porous medium

    Get PDF
    The influence of non-uniform permeability, thermal radiation and variable chemical reaction on three-dimensional flow of an incompressible nanofluid over an exponentially-stretching sheet in association with a convective boundary condition has been investgated. In the present study, a new micro-convection model known as Patel model has been employed to enhance the thermal conductivity and hence the heat transfer capability of nanofluids. In the present analysis, base fluids such as water, 30% ethylene glycol, 50% ethylene glycol and nanoparticles such as Cu, Ag and Fe3O4 have been considered. With the help of some suitable transformations the governing partial differential equationsare converted into a set of ordinary differential equations which have beeen then solved numerically by using fourth-order Runge-Kutta method along with shooting technique. The influence of various embedded physical parameters have been explored through graphs for velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers. The resistive force offered by the porous matrix belittles the momentum boundary layer and helps in growing the temperature and concentration boundary layers. Fluid temperature is an increasing function of radiation parameter Rd and Biot’s number Bi whereas concentration field is a decreasing function of Schmidt number Sc and chemical reaction parameter γ

    Co-fumigation with phosphine and sulfuryl fluoride: Potential for managing strongly phosphine-resistant rusty grain beetle, Cryptolestes ferrugineus (Stephens): Presentation

    Get PDF
    Populations of rusty grain beetle, Cryptolestes ferrugineus, have developed a very high level of resistance (1300×) to the fumigant phosphine (PH3) in Australia. Resistant insects triggered control failures, threatening the country’s annual grain market worth AU8billion.AlthoughPH3protocolswereamendedtomanagethisnewresistance,fumigationrequireslengthyexposureperiodswhichhaspracticaldifficulties.WhilethereisnosuitablereplacementforPH3,thecurrentstudyexplorespotentialapproachestoenhancetheefficacyofthisfumigant.Onepossibilityisco−fumigationofPH3withanothercomplementaryfumigant,sulfurylfluoride(SO2F2orSF),withthedualgoals:enhancedefficacyandminimiseuseofbothfumigants.AcohortofmixedageeggsandadultsofPH3−resistantC.ferrugineuswasfumigatedwithPH3andSFindividually,aswellasincombinationinsidedesiccatorsat25°Cand608 billion. Although PH3 protocols were amended to manage this new resistance, fumigation requires lengthy exposure periods which has practical difficulties. While there is no suitable replacement for PH3, the current study explores potential approaches to enhance the efficacy of this fumigant. One possibility is co-fumigation of PH3 with another complementary fumigant, sulfuryl fluoride (SO2F2 or SF), with the dual goals: enhanced efficacy and minimise use of both fumigants. A cohort of mixed age eggs and adults of PH3-resistant C. ferrugineus was fumigated with PH3 and SF individually, as well as in combination inside desiccators at 25°C and 60%RH for 168 h. Two doses below the maximal registered rates for SF (8.9 mg L- 1, equivalent to 1500 g hm-3) and PH3 (1.0 mg L-1) were tested. Co-fumigation was performed simultaneously for 168 h. Our results revealed that, the mixture of 1.1 mg L-1 or 2.2 mg L-1 of SF and 0.5 mg L-1 of PH3 over 168 h achieved complete control against resistant C. ferrugineus eggs and adults, whereas each of the tested doses failed individually. Our study confirms that SF and PH3 enhance the efficacy of each other when used in combination, which holds great potential for managing resistant C. ferrugineus.Populations of rusty grain beetle, Cryptolestes ferrugineus, have developed a very high level of resistance (1300×) to the fumigant phosphine (PH3) in Australia. Resistant insects triggered control failures, threatening the country’s annual grain market worth AU8 billion. Although PH3 protocols were amended to manage this new resistance, fumigation requires lengthy exposure periods which has practical difficulties. While there is no suitable replacement for PH3, the current study explores potential approaches to enhance the efficacy of this fumigant. One possibility is co-fumigation of PH3 with another complementary fumigant, sulfuryl fluoride (SO2F2 or SF), with the dual goals: enhanced efficacy and minimise use of both fumigants. A cohort of mixed age eggs and adults of PH3-resistant C. ferrugineus was fumigated with PH3 and SF individually, as well as in combination inside desiccators at 25°C and 60%RH for 168 h. Two doses below the maximal registered rates for SF (8.9 mg L- 1, equivalent to 1500 g hm-3) and PH3 (1.0 mg L-1) were tested. Co-fumigation was performed simultaneously for 168 h. Our results revealed that, the mixture of 1.1 mg L-1 or 2.2 mg L-1 of SF and 0.5 mg L-1 of PH3 over 168 h achieved complete control against resistant C. ferrugineus eggs and adults, whereas each of the tested doses failed individually. Our study confirms that SF and PH3 enhance the efficacy of each other when used in combination, which holds great potential for managing resistant C. ferrugineus

    Ethnomedicinal plants in Chhattisgarh origin

    Get PDF
    The survey on Ethano medicinal plant of Chhattisgarh origin has been carried out to gather information regarding potent medicinal plants and their uses. The survey report is focused on traditional practice ethnic natural resources for mitigation and cure from several ailments. Even today, these herbal medicines are in practice to cure variety of disease. The present investigation was conducted using questionnaire in rural areas situated around in Chhattisgarh. Traditional knowledge about plant wealth passes from generation to generation for conservation of the traditional medicine

    A rapid assay for the detection of resistance to phosphine in the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae)

    Get PDF
    Resistance to the fumigant phosphine in stored product insect pests is a global problem. Diagnosis of resistance relies on a bioassay developed by the FAO that involves a mortality assessment after 20-h fumigation of a pest population at a discriminating concentration of gas, followed by a 14-day post fumigation assessment. This bioassay is impractical for monitoring and early detection of phosphine resistance in routine pest management. We utilized the procedure of a commercial resistance detection test kit for rapid detection in field populations of lesser grain borer, Rhyzopertha dominica (F.). We established a knockdown effect of either susceptible or resistant insects by exposing them to a high concentration of phosphine. We assessed the relationship between adult knockdown times and the FAO method for 18 beetle populations utilizing knockdown criteria for a single beetle in a chamber, or for 50% or 100% knockdown times for groups of beetles, exposed to 3000 ppm of phosphine. We also determined the most effective concentrations that would elicit the quickest knockdown while estimating the recovery times from exposure. Results suggest that a KT100 test was better than the KT50 and the KTsingle tests. Based on the responses of susceptible populations, we established that a KT100 of approximately 18 min can be used as a viable knockdown time to distinguish a susceptible from a resistant populations. Higher concentrations of phosphine significantly elicited a quicker recovery in strongly resistant populations compared to susceptible populations. These findings have potential for developing a robust commercial kit for practical phosphine resistance detection in populations of R. dominica by commercial fumigators, and could be incorporated in a resistance management program

    Prevalence and potential fitness cost of weak phosphine resistance in Tribolium castaneum (Herbst) in eastern Australia

    Get PDF
    The prevalence of resistance to phosphine in the rust-red flour beetle, Tribolium castaneum, from eastern Australia was investigated, as well as the potential fitness cost of this type of resistance. Discriminating dose tests on 115 population samples collected from farms from 2006 to 2010 showed that populations containing insects with the weakly resistant phenotype are common in eastern Australia (65.2 of samples), although the frequency of resistant phenotypes within samples was typically low (median of 2.3). The population cage approach was used to investigate the possibility that carrying the alleles for weak resistance incurs a fitness cost. Hybridized populations were initiated using a resistant strain and either of two different susceptible strains. There was no evidence of a fitness cost based on the frequency of susceptible phenotypes in hybridized populations that were reared for seven generations without exposure to phosphine. This suggests that resistant alleles will tend to persist in field populations that have undergone selection even if selection pressure is removed. The prevalence of resistance is a warning that this species has been subject to considerable selection pressure and that effective resistance management practices are needed to address this problem. The resistance prevalence data also provide a basis against which to measure management success
    • …
    corecore