934 research outputs found

    Thymoma with Myasthenia Gravis in Adolescent

    Get PDF
    Thymomas are exceedingly rare in the first 20 years of life, Thymic lesions comprise approximately 2–3% of all pediatric mediastinal tumors and include thymic cysts, hyperplasia, carcinoma, and thymomas. Fewer than 30 cases in children have been described in the literature. Thymomas in adults are commonly associated with other diseases, the most frequent being myasthenia gravis. However, this association has been rarely reported in childhood. These tumors are typically aggressive, with poor outcomes. We report a case of thymoma associated with myasthenia gravis in a 16-year-old girl and review the literature

    Accelerated computation using runtime partial reconfiguration

    Get PDF
    Runtime reconfigurable architectures, which integrate a hard processor core along with a reconfigurable fabric on a single device, allow to accelerate a computation by means of hardware accelerators implemented in the reconfigurable fabric. Runtime partial reconfiguration provides the flexibility to dynamically change these hardware accelerators to adapt the computing capacity of the system. This thesis presents the evaluation of design paradigms which exploit partial reconfiguration to implement compute intensive applications on such runtime reconfigurable architectures. For this purpose, image processing applications are implemented on Zynq-7000, a System on a Chip (SoC) from Xilinx Inc. which integrates an ARM Cortex A9 with a reconfigurable fabric. This thesis studies different image processing applications to select suitable candidates that benefit if implemented on the above mentioned class of reconfigurable architectures using runtime partial reconfiguration. Different Intellectual Property (IP) cores for executing basic image operations are generated using high level synthesis for the implementation. A software based scheduler, executed in the Linux environment running on the ARM core, is responsible for implementing the image processing application by means of loading appropriate IP cores into the reconfigurable fabric. The implementation is evaluated to measure the application speed up, resource savings, power savings and the delay on account of partial reconfiguration. The results of the thesis suggest that the use of partial reconfiguration to implement an application provides FPGA resource savings. The extent of resource savings depend on the granularity of the operations into which the application is decomposed. The thesis could also establish that runtime partial reconfiguration can be used to accelerate the computations in reconfigurable architectures with processor core like the Zynq-7000 platform. The achieved computational speed-up depends on factors like the number of hardware accelerators used for the computation and the used reconfiguration schedule. The thesis also highlights the power savings that may be achieved by executing computations in the reconfigurable fabric instead of the processor core

    Scheduling & routing time-triggered traffic in time-sensitive networks

    Get PDF
    The application of recent advances in computing, cognitive and networking technologies in manufacturing has triggered the so-called fourth industrial revolution, also referred to as Industry 4.0. Smart and flexible manufacturing systems are being conceived as a part of the Industry 4.0 initiative to meet the challenging requirements of the modern day manufacturers, e.g., production batch sizes of one. The information and communication technologies (ICT) infrastructure in such smart factories is expected to host heterogeneous applications ranging from the time-sensitive cyber-physical systems regulating physical processes in the manufacturing shopfloor to the soft real-time analytics applications predicting anomalies in the assembly line. Given the diverse demands of the applications, a single converged network providing different levels of communication guarantees to the applications based on their requirements is desired. Ethernet, on account of its ubiquity and its steadily growing performance along with shrinking costs, has emerged as a popular choice as a converged network. However, Ethernet networks, primarily designed for best-effort communication services, cannot provide strict guarantees like bounded end-to-end latency and jitter for real-time traffic without additional enhancements. Two major standardization bodies, viz., the IEEE Time-sensitive Networking (TSN) Task Group (TG) and the IETF Deterministic Networking (DetNets) Working Group are striving towards equipping Ethernet networks with mechanisms that would enable it to support different classes of real-time traffic. In this thesis, we focus on handling the time-triggered traffic (primarily periodic in nature) stemming from the hard real-time cyber-physical systems embedded in the manufacturing shopfloor over Ethernet networks. The basic approach for this is to schedule the transmissions of the time-triggered data streams appropriately through the network and ensure that the allocated schedules are adhered with. This approach leverages the possibility to precisely synchronize the clocks of the network participants, i.e., end systems and switches, using time synchronization protocols like the IEEE 1588 Precision Time Protocol (PTP). Based on the capabilities of the network participants, the responsibility of enforcing these schedules can be distributed. An important point to note is that the network utilization with respect to the time-triggered data streams depends on the computed schedules. Furthermore, the routing of the time-triggered data streams also influences the computed transmission schedules, and thus, affects the network utilization. The question however remains as to how to compute transmission schedules for time-triggered data streams along with their routes so that an optimal network utilization can be achieved. We explore, in this thesis, the scheduling and routing problems with respect to the time-triggered data streams in Ethernet networks. The recently published IEEE 802.1Qbv standard from the TSN-TG provides programmable gating mechanisms for the switches enabling them to schedule transmissions. Meanwhile, the extensions specified in the IEEE 802.1Qca standard or the primitives provided by OpenFlow, the popular southbound software-defined networking (SDN) protocol, can be used for gaining an explicit control over the routing of the data streams. Using these mechanisms, the responsibility of enforcing transmission schedules can be taken over by the end systems as well as the switches in the network. Alternatively, the scheduling can be enforced only by the end systems or only by the switches. Furthermore, routing alone can also be used to isolate time-triggered data streams, and thus, bound the latency and jitter experienced by the data streams in absence of synchronized clocks in the network. For each of the aforementioned cases, we formulate the scheduling and routing problem using Integer Linear Programming (ILP) for static as well as dynamic scenarios. The static scenario deals with the computation of schedules and routes for time-triggered data streams with a priori knowledge of their specifications. Here, we focus on computing schedules and routes that are optimal with respect to the network utilization. Given that the scheduling problems in the static setting have a high time-complexity, we also present efficient heuristics to approximate the optimal solution. With the dynamic scheduling problem, we address the modifications to the computed transmission schedules for adding further or removing already scheduled time-triggered data streams. Here, the focus lies on reducing the runtime of the scheduling and routing algorithms, and thus, have lower set-up times for adding new data streams into the network

    Speeding up NAS with Adaptive Subset Selection

    Full text link
    A majority of recent developments in neural architecture search (NAS) have been aimed at decreasing the computational cost of various techniques without affecting their final performance. Towards this goal, several low-fidelity and performance prediction methods have been considered, including those that train only on subsets of the training data. In this work, we present an adaptive subset selection approach to NAS and present it as complementary to state-of-the-art NAS approaches. We uncover a natural connection between one-shot NAS algorithms and adaptive subset selection and devise an algorithm that makes use of state-of-the-art techniques from both areas. We use these techniques to substantially reduce the runtime of DARTS-PT (a leading one-shot NAS algorithm), as well as BOHB and DEHB (leading multifidelity optimization algorithms), without sacrificing accuracy. Our results are consistent across multiple datasets, and towards full reproducibility, we release our code at https: //anonymous.4open.science/r/SubsetSelection NAS-B132

    Drain versus no drain in an uncomplicated elective laparoscopic cholecystectomy- an institutional study

    Get PDF
    Background: Laparoscopic cholecystectomy (LC) is the gold standard for symptomatic gallstones. Post surgery to keep a subhepatic drain is an issue of debate. A randomised trial was designed to assess the outcome of drain in elective lap cholecystectomy.Methods: A randomized control trial was done from January 2019 to June 2020 among 40 patients. They were randomised into group A: (n=20) in which subhepatic space was drained by an abdominal drain size 28F drain which was brought out through right anterior axillary port (even group) and group B: (n=20) in which there was no-drain at sub hepatic space (odd group). The end points of this study was to compare postoperative pain, fever, wound infection ,hospital stay between the two groups.Results: Mean hospital stay among drain group was 3.95±1.35 days as compared to 2.55±0.60 days among no drain group and the difference was statistically significant (p value =0.001). 8 (40%) patients with drain had port side infection as compared to 1 (5%) patient among no drain group and the observed difference was statistically significant (p value =0.02). Post operative pain abdomen assessed using VAS, and found significant 12 after surgery. The young female patients were unhappy with the drain scar and 3 cases requested for need of plastic surgery corrections also.Conclusions: The routine use of a drain in uncomplicated elective laparoscopic cholecystectomy has no benefit; in contrast, it is associated with longer hospital stay, so better to avoid the drain

    AutoML for Climate Change: A Call to Action

    Full text link
    The challenge that climate change poses to humanity has spurred a rapidly developing field of artificial intelligence research focused on climate change applications. The climate change AI (CCAI) community works on a diverse, challenging set of problems which often involve physics-constrained ML or heterogeneous spatiotemporal data. It would be desirable to use automated machine learning (AutoML) techniques to automatically find high-performing architectures and hyperparameters for a given dataset. In this work, we benchmark popular AutoML libraries on three high-leverage CCAI applications: climate modeling, wind power forecasting, and catalyst discovery. We find that out-of-the-box AutoML libraries currently fail to meaningfully surpass the performance of human-designed CCAI models. However, we also identify a few key weaknesses, which stem from the fact that most AutoML techniques are tailored to computer vision and NLP applications. For example, while dozens of search spaces have been designed for image and language data, none have been designed for spatiotemporal data. Addressing these key weaknesses can lead to the discovery of novel architectures that yield substantial performance gains across numerous CCAI applications. Therefore, we present a call to action to the AutoML community, since there are a number of concrete, promising directions for future work in the space of AutoML for CCAI. We release our code and a list of resources at https://github.com/climate-change-automl/climate-change-automl

    Paradoxical euthyroid hormone profile in a case of Graves' disease with cardiac failure

    Get PDF
    Cardiac failure is an uncommon complication of juvenile hyperthyroidism. We describe an adolescent boy with Graves' disease who developed manifestations of heart failure while on antithyroid medications. There was no evidence of any underlying cardiac disease. He had paradoxical euthyroid hormone profile which rose to hyperthyroid range when the manifestations of the cardiac failure subsided. The case highlights several unusual features of Graves' disease
    • …
    corecore