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Abstract
Runtime reconfigurable architectures, which integrate a hard processor core along with a re-
configurable fabric on a single device, allow to accelerate a computation by means of hardware
accelerators implemented in the reconfigurable fabric. Runtime partial reconfiguration pro-
vides the flexibility to dynamically change these hardware accelerators to adapt the computing
capacity of the system. This thesis presents the evaluation of design paradigms which exploit
partial reconfiguration to implement compute intensive applications on such runtime recon-
figurable architectures. For this purpose, image processing applications are implemented on
Zynq-7000, a System on a Chip (SoC) from Xilinx Inc. which integrates an ARM Cortex A9
with a reconfigurable fabric.

This thesis studies different image processing applications to select suitable candidates that
benefit if implemented on the above mentioned class of reconfigurable architectures using
runtime partial reconfiguration. Different Intellectual Property (IP) cores for executing basic
image operations are generated using high level synthesis for the implementation. A software
based scheduler, executed in the Linux environment running on the ARM core, is responsible
for implementing the image processing application by means of loading appropriate IP cores
into the reconfigurable fabric. The implementation is evaluated to measure the application
speed up, resource savings, power savings and the delay on account of partial reconfigura-
tion.

The results of the thesis suggest that the use of partial reconfiguration to implement an
application provides FPGA resource savings. The extent of resource savings depend on the
granularity of the operations into which the application is decomposed. The thesis could also
establish that runtime partial reconfiguration can be used to accelerate the computations in
reconfigurable architectures with processor core like the Zynq-7000 platform. The achieved
computational speed-up depends on factors like the number of hardware accelerators used for
the computation and the used reconfiguration schedule. The thesis also highlights the power
savings that may be achieved by executing computations in the reconfigurable fabric instead
of the processor core.
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Chapter 1

Introduction
Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Study of Partial Reconfiguration in FPGAs . . . . . . . . . . . . . . 2
1.2.2 Study of Image Processing Applications . . . . . . . . . . . . . . . . 2
1.2.3 Implementation using Partial Reconfiguration . . . . . . . . . . . . . 3
1.2.4 Evaluation of Implementations using Partial Reconfiguration . . . . 4

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Ever since their invention two decades back, reconfigurable architectures have been evolving
continuously. Their popularity can be associated to the fact that they combine the flexibility
of software with the performance of hardware. Field Programmable Gate Arrays (FPGAs)
are perhaps the most popular and widely used class of reconfigurable architectures. With
the research community devoting significant resources for developing these architectures, it is
hardly surprising that they are growing larger and becoming faster by the day. Xilinx Inc.
and Altera Corporation, world’s leading vendors of FPGAs, have been introducing larger and
faster products with every passing generation along with additional features which enhance
their usability. In their recent product releases, they have introduced the feature of Partial
Reconfiguration which allows the modification of selected FPGA areas while the logic in the
remaining area continues to function. This ability of an FPGA to modify the implemented
logic during operation takes its flexibility one step further [1].

The concept of partial reconfiguration of FPGAs has been around in academia for long, with
lot of research on exploring different use cases where the additional flexibility can be put to
effective use. Publications proposing usage of partial reconfiguration for purposes varying
from power efficient designs to improving fault tolerance have been published by the scientific
community [2, 3, 4, 5]. Computation platforms utilising partial reconfiguration with different
granularities have been presented in [6, 7]. Applications like video processing implemented
using partial reconfiguration have been introduced in [8]. Despite all the work in developing
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1 Introduction

partial reconfiguration as a design methodology, its usage is limited to research applications.
This can be attributed to the lack of design tools for efficient implementation and commercial
applications which may significantly benefit from it to justify the effort required for its complex
design flow [9, 10]. To promote the usage of partial reconfiguration in commercial applications,
FPGA vendors have made available reference designs to exhibit its potential [11].

This thesis explores the technical details underlying the process of partial reconfiguration in
FPGAs and implements compute intensive applications on runtime reconfigurable architec-
tures with a processor core using partial reconfiguration. The thesis further evaluates the
implementation to quantify the benefits and overheads involved in such designs.

This thesis lies within the framework of the project Online Testing Strategies for Reliable Re-
configurable Architectures (OTERA) funded by the Deutsche Forschungsgemeinschaft (DFG)
[12]. The primary goal of this project is enhancing the reliability of reconfigurable architec-
tures which use runtime partial reconfiguration by guaranteeing the health of the reconfig-
urable fabric. This project focuses on developing online test approaches which monitor and
verify reliable functioning of the underlying reconfigurable fabric by means of periodic tests
[13, 14]. The partial reconfiguration based implementation developed as a part of the thesis
aims to be re-usable for the OTERA project for validating the testing approaches researched
within the project.

1.2 Goals

1.2.1 Study of Partial Reconfiguration in FPGAs

The thesis commences with the study of the concept of partial reconfiguration, its underlying
technical challenges and the relevant publications in the field. Design tool chains which
support partial reconfiguration based design have also been explored. While there is no bias
towards any particular FPGA vendor, tool chains and FPGAs from Xilinx Inc. are primarily
investigated, mainly because of its synergy with other implementations within the OTERA
project [15, 16].

Partial reconfiguration is a method which needs to be used appropriately to unlock its poten-
tial. Researchers and design community have put forth certain design patterns which utilises
partial reconfiguration as an effective tool. Different ways in which partial reconfiguration
can be used effectively have been presented in [1]. New design techniques use partial reconfig-
uration to implement novel features which would have been otherwise impossible. As a part
of the thesis, different design paradigms which use partial reconfiguration have been explored
and summarised.

1.2.2 Study of Image Processing Applications

One of the primary goals of the thesis is to implement compute intensive applications on a
reconfigurable architecture using partial reconfiguration. The choice of the application(s) to

2



1.2 Goals

(a) Camera on-board a car (b) Lane Detection with Image Processing

Figure 1.1: Use case for Image Processing Algorithms - Lane Detection

be implemented is critical for deriving meaningful results from the thesis. Applications which
have static resource requirements rarely tend to benefit from partial reconfiguration. As a
part of the thesis, different applications are investigated for their suitability to be implemented
with partial reconfiguration.

The applications investigated are limited to the domain of image and video processing. Image
and video processing algorithms are ubiquitously used these days with most applications using
it in some form or other. For instance, Figure 1.1 shows the usage of image processing to
detect lanes on a highway, which can be used for warning drivers against accidental lane
departures1. The choice of image and video processing algorithms for implementation is not
only driven by its relevance in current commercial applications, but also by the fact that the
complexity of these algorithms is sufficient enough to derive quality data out of the exercise.
The abundance of literature and open source implementations available for use in this domain
eases the mapping of these algorithms on to reconfigurable architectures [17, 18].

1.2.3 Implementation using Partial Reconfiguration

Applications, suitable to be implemented using partial reconfiguration, are implemented on
a runtime reconfigurable architecture with a processor core. The thesis utilises the latest
available tool chains for design purposes and attempts to keep the design generic enough for
implementing any image processing application. One of the optional goals for the thesis, is
to utilise Direct Memory Access (DMA) and interrupts for improving the performance of the
implemented applications.

It is important to note that the thesis does not deal with development of customised hardware
architectures for image processing, rather it seeks to evaluate the usage of partial reconfigu-
ration for the purpose. Hence, the thesis does not attempt to develop any image processing

1Image from Wikipedia - Lane departure warning system, licensed for usage under Creative Commons License
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1 Introduction

architectures from scratch. Instead this thesis explores usage of open source Intellectual Prop-
erty (IP) cores for image processing functionalities and high level synthesis tools for generating
the required IP cores.

1.2.4 Evaluation of Implementations using Partial Reconfiguration

The final phase of the thesis evaluates the performance of the implemented applications com-
pared to its software and non partial reconfiguration based hardware implementations. The
evaluation quantifies the FPGA resource savings, power savings, the time required for per-
forming reconfigurations and the achieved application speed-up, when partial reconfiguration
is deployed.

1.3 Thesis Organisation

The organisation of the remainder of this thesis is presented in this section. Chapter 2
summarises the different publications in the field of partial configuration of FPGAs, mainly
with respect to its benefits and involved overheads. The different popular platforms and novel
FPGA designs based on partial reconfiguration are also briefly mentioned in this chapter.

Chapter 3 explores the different image processing algorithms which can be accelerated us-
ing FPGAs. Few applications which can potentially benefit from partial reconfiguration are
elaborately explained in the chapter. This chapter also enumerates open source implemen-
tations of these image processing algorithms, which can be used as a starting point for an
implementation of partial reconfiguration based designs.

Chapter 4 covers the design choices involved in implementing image processing applications on
a reconfigurable architecture with a processor core. The involved tool flow is briefly described
in this chapter. Chapter 5 describes the implementation of all the selected image processing
applications using partial reconfiguration.

Chapter 6 puts forth the result of all the evaluations performed on the implemented image
processing applications. Chapter 7 concludes the thesis with summary and possible future
work originating from this thesis.

Summary

This thesis explores different design patterns for efficient use of partial reconfiguration. The
goals of the thesis include investigating different technical aspects of partial reconfiguration,
relevant design tools and applications which can benefit from partial reconfiguration. The
thesis also aims to implement compute intensive and industrially relevant applications on a
runtime reconfigurable architecture with a processor core for evaluation.
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Chapter 2

Partial Reconfiguration in FPGAs
Contents

2.1 Benefits of Partial Reconfiguration . . . . . . . . . . . . . . . . . . . 6
2.2 Types of Partial Reconfiguration . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Difference based Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Module based Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Process of Partial Reconfiguration . . . . . . . . . . . . . . . . . . . 12
2.4 Configuration Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Tools used for Partial Reconfiguration . . . . . . . . . . . . . . . . . 14
2.6 Limitations of Partial Reconfiguration . . . . . . . . . . . . . . . . . 15
2.7 Applications of Partial Reconfiguration . . . . . . . . . . . . . . . . 15

Partial reconfiguration of a Field Programmable Gate Array (FPGA) deals with modifying
an already programmed hardware design in an FPGA. The reconfigurable fabric inside an
FPGA is configured by downloading bitstreams generated by synthesis of hardware descrip-
tions. During the configuration of an FPGA, the entire fabric is programmed by use of full
bitstreams. With partial reconfiguration, it is possible to program only selected regions of the
reconfigurable fabric. This is done by the usage of partial bitstreams which do not contain
information for the entire reconfigurable fabric, but only for those regions which are to be
(re)configured.

For partial reconfiguration, the hardware design must be divided into two parts - static logic
and reconfigurable logic. During the process of partial reconfiguration, only those areas of
FPGA are modified where the reconfigurable logic is implemented. The process of reconfig-
uration may be performed at runtime, i.e. the static logic continues to function even as the
reconfigurable logic is undergoing reconfiguration.

As shown in the Figure 2.1, FPGA is configured initially with a complete bitstream, which
programs both the static as well as the reconfigurable logic. During subsequent reconfigu-
rations, partial bit streams are loaded which modify only the reconfigurable logic, while not
affecting the integrity of the static logic [1].

5



2 Partial Reconfiguration in FPGAs

Figure 2.1: Partial Reconfiguration in FPGAs

2.1 Benefits of Partial Reconfiguration

The use of partial reconfiguration opens up a whole new world of FPGA based designs which
would have been otherwise difficult to implement. The benefits of using partial reconfiguration
include, but are not limited to reducing power consumption and resource utilisation. This
section discusses all the benefits of using partial reconfiguration in FPGAs.

Reduced Resource and Power Consumption With partial reconfiguration, it is possible to
time multiplex resources between different hardware modules. This reduces the total
resource requirement for implementing any hardware design enabling usage of FPGAs
with reconfigurable fabrics of smaller size, which translates into power and cost savings.
For systems using multiple FPGAs, partial reconfiguration provides the possibility of
integrating the design into a lower number of FPGAs. For such systems, power savings
can be obtained not only from the reduced number of FPGAs but also from the reduction
in off-chip communication [19, 20].

Performance Improvements and Flexibility Runtime partial reconfiguration helps improve
the performance of applications by exploiting higher levels of parallelism. With partial
reconfiguration, the computation capacity of the system can be adapted at run time.
For instance in systems where different hardware accelerators are used sequentially one
after the other, runtime partial reconfiguration provides performance improvements by
allocating more resources per accelerator. The additional resources can be used for
speeding up the operation of the accelerator or for creating more number of accelerators
to perform the operation in parallel.

Improved Fault Tolerance and Dependability Fault tolerance is a highly important criterion
for safety critical systems. System failures on account of hardware faults could be
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2.2 Types of Partial Reconfiguration

fatal in such systems. With partial reconfiguration, fault tolerance and dependability
of the systems can be improved by means of techniques like module diversification,
configuration scrubbing [2, 4, 21, 22].

Faster System Boot up Just as Moore’s law predicted, the number of transistors on an Inte-
grated Chip (IC) has kept doubling biennially. From the perspective of FPGAs, this has
resulted in larger reconfigurable fabrics. The growing size of reconfigurable fabrics im-
plies larger bitstreams and hence longer configuration times. The size of full bitstreams
for the largest of the current state-of-art 7-series FPGAs from Xilinx Inc. is over 50 MB
[23]. Consequently, initial configuration of large FPGAs consumes boot times in the
order of hundreds of milliseconds. Many applications cannot tolerate such high start up
times and hence cannot use such large FPGAs. For many others, high start up times
do not allow fully powering down the FPGA when idle.

Partial bitstreams are smaller and hence require lower configuration times. Start up
times can be reduced by loading only partial design consisting of critical components
instead of the entire design at start up. Subsequently the remaining part can be loaded
using partial reconfiguration after the system has started up. The time required for
booting now depends on the size of the partial bitstream which is loaded initially [20].

Self Adapting Hardware Designs Use of partial reconfiguration enables implementation of
hardware architectures which are able to adapt themselves to changing operating and
environmental conditions. This allows implementation of systems based on artificial
intelligence and learning [24].

2.2 Types of Partial Reconfiguration

Partial reconfiguration can be classified based on when the process of reconfiguration is per-
formed [20].

1. Partial reconfiguration performed when the device is not active, for instance by pow-
ering off the device or by disabling all the clocks in the design is known as Passive
Partial Reconfiguration. It is also known as static partial reconfiguration. Passive
reconfiguration is supported in Xilinx Spartan-3. Passive partial reconfiguration is use-
ful in cases where there is a need to upgrade hardware remotely and system down time
is acceptable.

2. Partial reconfiguration performed when device is operational is known as Active Par-
tial Reconfiguration. It is also known as dynamic or runtime partial reconfiguration.
Xilinx Virtex families support active partial reconfiguration. Active partial reconfigu-
ration is useful for implementing self adapting hardware designs.

Xilinx Inc. classifies partial reconfiguration based on the design flow [19, 25].

1. Difference based Partial Reconfiguration — Such a partial reconfiguration flow is
used for making small changes in the design operating on the FPGA. This design flow
configures only the differences between the operating design and the new one.
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2. Module based Partial Reconfiguration — Module based partial reconfiguration is
recommended when large logic blocks are to be reconfigured. Just as the name suggests,
this method follows a modular design approach.

2.2.1 Difference based Flow

Of these two partial reconfiguration design flows, the difference based flow works at a lower
abstraction level and hence requires an understanding of logic implementation on FPGAs.
This design flow is based on the principle of exploiting the correlation between bitstreams
of similar designs. This flow is recommended when the reconfiguration is done for achieving
minor changes. Such changes include but are not limited to modification of LUT equations,
I/O ports and contents of block RAM.

Figure 2.2: Difference Based Partial Reconfiguration

Consider two hardware designs resembling each other, say Design A and Design B. Figure 2.2
shows the difference between the designs — a logic gate and few I/O ports. To configure an
FPGA for either of the designs, the full bitstreams which are generated from the synthesis
of the corresponding designs are required. If the device requires to switch between the two
designs, then during each reconfiguration corresponding full bitstream must be uploaded to
FPGA. Instead the full bitstream can be generated for only one of the designs, say Design
A. For Design B, a partial bitstream can be created based on the difference between the two
designs. This partial bitstream modifies only those regions of the FPGA which are different
between Design A and B, hence modifying Design A to get Design B. It is obvious that for
small changes the size of partial bitstreams will be much smaller than the full bitstreams. It
is important to note that loading this partial bitstream will result in Design B only if Design
A is already operating on the FPGA.
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In principle, this style of partial bit stream creation is advantageous only if the layouts of the
designs to be reconfigured resemble each other. This design flow is practically feasible only
for small designs as there is no automated way of creating similar layouts for large unrelated
designs [26]. The distinction between static and reconfigurable logic is rather ambiguous in this
design flow, especially when more than two designs are considered. In case of multiple designs,
logic which is static between two designs might vary with other designs in the application.

The difference based design flow is used for reconfiguring a particular design to another.
The design may not be reverted back with the same bitstream. Applications with more
designs require more partial bitstreams and hence are more difficult to manage. For instance,
application with N designs requiring that any design be reconfigurable to any other arbitrary
design requires N(N-1) partial bitstreams. This issue can be mitigated to an extent by fixing
one of the designs as a neutral design and reconfiguring the device to this design before loading
the desired design. This reduces the required number of partial bitstreams to 2N and hence
the required storage area for the bitstreams but at the cost of two reconfigurations instead
of one. While this approach solves the problem of using many partial bitstreams, it is not
always possible to find a neutral design which resembles all the other used designs [26].

Xilinx tool chains support difference based partial reconfiguration for its FPGAs with FPGA
Editor for modifying LUT equations and I/O Standards and Data2MEM for modifying block
RAM contents. The reference designs using difference based partial reconfiguration are pre-
sented in [27].

2.2.2 Module based Flow

The module based design flow is highly recommended for complex designs where large blocks
of logic are to be reconfigured. This design flow exploits the advantage of having common log-
ical blocks between multiple designs. The common logic between such designs is implemented
as static logic while the other hardware modules are time multiplexed on the reconfigurable
fabric. While the difference based design flow makes small changes inside hardware modules,
module based design flow modifies the hardware modules itself. Unlike in difference based
design flow, this design flow demands clear demarcation between the static and the recon-
figurable logic. The design in Figure 2.3 clearly defines the regions of the FPGA as static
or reconfigurable. Hardware modules are loaded into these reconfigurable regions based on a
reconfiguration schedule.

This design flow is based on Bottom-Up synthesis, where each hardware module is synthesized
independently. Reconfigurable logic is separated from the static logic by means of partitions
(also known as containers) — logical sections of the design which are marked for reconfigu-
ration in the top level module of hardware. Partial reconfiguration is achieved by creating
design configurations which assign the synthesized hardware modules, designated as reconfig-
urable modules, to these partitions. Different design configurations assign different hardware
modules to each partition and then create partial bitstreams corresponding to each hardware
module. Required hardware modules can be loaded into the partitions of the operating design
by downloading the corresponding partial bitstreams into the FPGA. As a rule of thumb,
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2 Partial Reconfiguration in FPGAs

Figure 2.3: Module Based Partial Reconfiguration [27].

the size of the partition should be at least 20% bigger than the size of the biggest hardware
module being assigned to it to account for routing overheads [11].

Thus, the module based partial reconfiguration is simply implementing several hardware mod-
ules and then time multiplexing the synthesized modules using partitions. Using multiple
partitions in a design brings with it the challenge of placing them appropriately in the recon-
figurable fabric. Figure 2.4 shows different possible styles of placing reconfigurable modules
in a partition [20].

1. Island Style - This style allows placing one reconfigurable module per partition —
there can be many partitions in a design. Island style of placing the reconfigurable
modules can be classified as;
(a) Single Island Style - The sets of reconfigurable modules for each of the partition are
distinct, i.e. the reconfigurable modules can be loaded on only a specific partition and
(b) Multi Island Style - Reconfigurable modules may be loaded in different partitions.
As the size of the partition cannot be modified after synthesis and implementation,
it must be big enough to allow loading of the largest of the allocated reconfigurable
module. This scheme suffers from the problem of internal fragmentation, i.e. wastage
of resource on the fabric when smaller modules are loaded into the partition.

2. Slot Style - This style calls for division of a partition into multiple tiles along a sin-
gle dimension (columns, since resources are arranged in columns on the reconfigurable
fabric) called slots. The reconfigurable modules are loaded on multiple of these slots
based on their resource requirements. This allows loading of multiple reconfigurable
modules into a partition, reducing the impact of internal fragmentation like in Island
style. However, this style is affected by external fragmentation, i.e. though there are
free slots for loading a module, they do not form a continuous area hence preventing the
loading of the module. Analogous to memory de-fragmentation in the heap memories
of computer systems, compacting can reduce the external fragmentation in this style.
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(a) Island Style (b) Slot Style

Figure 2.4: Different styles of placing Reconfigurable Modules in Partitions

The slot style of placing reconfigurable modules increases the design complexity, espe-
cially for providing communication to and from the modules.

3. Grid Style - Grid style further extends the slot style by dividing the partition into tiles
along both dimensions. This reduces the amount of unused resources in the partition,
i.e. external fragmentation. Placing the reconfigurable modules in the tiles optimally,
wasting least FPGA area, using the grid or the slot style is analogous to the bin packing
problem which is np-hard.

Using the module based design flow for partial reconfiguration poses numerous challenges for
designers. Communication between modules which use bus macros passing through partitions
marked for reconfiguration leads to problems, as during reconfiguration there can be no com-
munication between them. Ideally, no communication flows should pass through partitions
meant to be reconfigured. Communication between the modules in static logic and reconfig-
urable logic must be handled via bus macros in static region, like in Figure 2.3. Even then
designs must have safety features to prevent any attempt to communicate with modules which
are undergoing reconfiguration.

Unlike the partial bitstreams generated using difference based design flow which program only
the difference between two designs, the partial bitstreams generated using this flow configure
the entire reconfigurable partition for which they are generated. Hence loading a partial
bitstream will program the corresponding partition irrespective of the current contents of the
partition. This implies, for any application with N design configurations, only N bitstreams
are required for changing any arbitrary configuration to any other configuration. However, a
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full bitstream should have been loaded at least once for loading the static logic in the fabric
following which it cannot be modified again without a full configuration.

The current versions of the commercial design tools do not support all the advancements
with respect to this design flow, owing to the involved complexities in placement and routing.
Most of the tools support only the island style of placing the modules. Multi-island style is
supported by generation of different partial bitstreams for a hardware module, each associated
with a particular partition.

2.3 Process of Partial Reconfiguration

As shown in Figure 2.5, the process of partial reconfiguration is slightly different from the full
configuration process, owing to the difference in contents of the partial and full bitstreams. A
full bitstream consists of a header, configuration data and checksum. Together they contain all
the data necessary to verify the integrity of the bitstream and configure the complete FPGA
fabric with the design. At the end of the configuration process, the FPGA asserts the DONE
signal and enters the user mode from the configuration mode, i.e. the design starts functioning,
if the bitstream was not found corrupted. This ensures incorrect designs never start operating
on the FPGA. Partial bitstreams, on the other hand, contain only configuration data and
checksum. In contrast to the full configuration, the FPGA is already in user mode with an
operating design when the reconfiguration process takes place. Hence, asserting the DONE
signal is meaningless. The reconfiguration process lasts till the partial bitstream is entirely
sent to the configuration port. During the reconfiguration the other areas of the FPGA should
not initiate any communication with the areas under reconfiguration.

In order to download a bitstream to a FPGA, it is directed to any of the available configuration
ports. Configuration ports are responsible for configuring the FPGA fabric after verifying the
integrity of the bitstreams. The different configuration ports generally used are discussed in
Section 2.4. Generally, a configuration port has an interface which includes an INIT/PROG
signal for starting the configuration mode. For this purpose, the PROG or the INIT signal
is asserted while downloading a full bitstream. This is not done while downloading partial
bitstreams, as the reconfiguration process is carried out in user mode.

Checksum failures indicate corrupt bitstreams and are a cause of concern when detected in
partial bitstreams. The checksum, while using partial bitstreams, can be verified only after
the entire bitstream has been loaded. By then it is too late, as the incorrect design starts
operating on the FPGA. If the checksum failure is caused due to erroneous configuration data,
the incorrect design is isolated within the reconfigurable partition and can be corrected by
loading another partial bitstream for the corresponding partition. However, if the the failure
is caused due to erroneous frame address of the reconfigurable partition, then the static logic
may be corrupted as a result of the reconfiguration. To avoid such mishaps especially in
systems where bitstreams are transmitted through noisy channels, their integrity needs to be
checked before directing them to configuration ports [1].
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(a) Full Configuration

(b) Partial Reconfiguration

Figure 2.5: Differences between full configuration and partial reconfiguration [1]

2.4 Configuration Ports

Generally, a processor or a state machine is used for fetching the partial bitstreams from
non-volatile memory and directing it to configuration ports for reconfiguration. Different
configuration ports can be used for performing partial reconfiguration of an FPGA. A short
list of these configuration ports have been presented in this section.

• Internal Configuration Access Port (ICAP)—This port enables partial reconfiguration
within the FPGA, thus allowing self configuring FPGA designs. Self configuring FPGA
designs with Xilinx Spartan III families have been presented in [28]. Designs for im-
proving the fault tolerance of the ICAP has been presented in [29].

• Processor Configuration Port—This configuration interface is used by the runtime recon-
figurable architectures which integrate a hard processor core. The processor configures
the reconfigurable fabric using this port. Processor Configuration Access Port (PCAP)
in the Zynq-7000 platform from Xilinx Inc. and FPGA Configuration Manager in Arria
V devices from Altera Corp. are examples of such ports [30, 31].

• JTAG Port—This is an interface for quick testing of partial reconfiguration. Processors
can be used for fetching the bitstreams from the memory and directing it towards the
JTAG port. Different tools are available for this purpose [1].

The Figure 2.6 shows the usage of the three mentioned configuration ports. In addition to
these ports, serial ports can also be used for the purpose of reconfiguration [1, 31].

13



2 Partial Reconfiguration in FPGAs

Figure 2.6: Partial Reconfiguration using ICAP, PCAP and JTAG Port [1]

2.5 Tools used for Partial Reconfiguration

The design tools which can be used for creation of hardware designs based on partial recon-
figuration depend upon the FPGA in use.

Vendors of FPGAs — Xilinx Inc. and Altera Corporation — have modified their tool suites
for allowing designers to employ partial reconfiguration. PlanAhead from Xilinx Inc. and
Quartus from Altera Corporation allow users to create designs based on module based partial
reconfiguration. PlanAhead allows placing reconfigurable modules in Island style — single as
well as multiple. FPGA Editor allows users to design using difference based partial reconfig-
uration. These tool chains are proprietary and allow only licensed usage.

There are other open source design tools from the research community for implementing
partial reconfiguration based FPGA designs. OpenPR, an open source partial reconfiguration
toolkit, provides functionality similar to Xilinx tools but is open source and is extendable
for accommodating research developments. This toolkit is targeted towards Xilinx Virtex-4
and Virtex-5 architectures but is flexible to accommodate other architectures as well [32].
GoAhead is an efficient tool for using partial reconfiguration on recent Xilinx FPGA products
including Spartan-6 series [33].

All these mentioned tools provide support for implementing FPGA based designs using par-
tial reconfiguration. Most of these tools allow design verification by individually testing each
valid configuration as they do not support simulation of the reconfiguration process. ReSim1

is a tool developed for simulation of the reconfiguration process and complete verification of
systems deploying partial reconfiguration. Currently it supports only limited FPGA architec-
tures (mainly Xilinx Virtex 4, 5 and 6 architectures) and depends on ModelSim for simulation
support [34].

1Source code and implementation details available at https://code.google.com/p/resim-simulating-partial-
reconfiguration/wiki/ReSim
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2.6 Limitations of Partial Reconfiguration

The process of incorporating partial reconfiguration in FPGA based designs increases the
complexity of the design flow manifold. The limitations of using partial reconfiguration are
enumerated in this section.

1. Current available commercial tool chains do not support reconfiguration of all compo-
nent types. For instance global clocks and clock modifying circuitry must reside in the
static region of the design [26].

2. The additional complexity on account of partial reconfiguration increases the time re-
quired by the design tools for synthesizing and implementing the design [1]. Due to
the involved complications, current design tools do not support all the advances in the
technology. E.g. current commercial tools do not support the grid and the slot style of
placing the reconfigurable modules.

3. Both the design flows for partial reconfiguration — difference based and module based
— have their own limitations ranging from routing challenges to restrictions in loading
arbitrary design configurations. These have been described in brief in their individual
sections - 2.2.1 and 2.2.2.

4. Use of partial reconfiguration introduces threat of security breaches by allowing unau-
thorized personnel to modify operating hardware designs. The process of mitigating the
security risks is an ongoing research topic [35, 36].

2.7 Applications of Partial Reconfiguration

There are innumerable applications which use partial reconfiguration and examples where
they would be very useful. This section briefly mentions a few of the applications.

Various applications using partial reconfiguration are presented in [1]. One of the applications
involving use of partial reconfiguration in a network switch is briefly presented in this sec-
tion. Network switch is a device with multiple ports used for interfacing different computer
networks. Generally, a switch supports several communication protocols on each of its ports.
For this purpose, each of the ports is connected to multiple interfaces each implementing a
specific protocol. At run time, the interface for the required communication protocol is used.
However this leads to unnecessary wastage of FPGA area as each port has to implement
several communication interfaces, most of which will never be used. The FPGA resource
consumption can be reduced by usage of partial reconfiguration as shown in Figure 2.7. In
this implementation, each port of the network switch is connected to an empty reconfigurable
container. The bitstreams corresponding to all the interface implementations are stored in
some non volatile memory. At runtime, ports can use any of the communication interface by
loading the appropriate bitstream. Such an implementation also provides additional flexibil-
ity in terms of extending the support to a new protocol. This would just require adding an
additional bitstream to the non volatile memory.
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Figure 2.7: Network Switch - Implementation using Partial Reconfiguration

The partially reconfigurable network switch uses partial reconfiguration with rather coarse
granularity. Partial reconfiguration has also been used with finer granularities for develop-
ment of processors which use reconfigurable fabric for implementing specific instructions [6, 7].
Rotating Instruction Set Processing Platform (RISPP) is an example of one such platform.
RISPP is a platform with a processor which uses a reconfigurable fabric for implementing
hardware accelerators for expediting the execution of a few selected instructions. In contrast
to all the other state-of-the-art reconfigurable architectures, RISPP takes runtime decisions
on executing an instruction using the general datapath of the processor or using the accel-
erator implemented in the reconfigurable fabric. RISPP uses a runtime system which selects
an implementation of an instruction from the available alternatives based on the monitored
frequency of execution of the instruction and the size of the reconfigurable fabric in use.

Summary

Partial reconfiguration of an FPGA deals with modification of a design while it is operating
on the FPGA. Hardware designs must be divided into static logic and reconfigurable logic for
implementation with partial reconfiguration. Designs using partial reconfiguration benefit by
reduction in power and resource consumption. Implementations using partial reconfiguration
can be used for improving fault tolerance and for implementing applications based on artificial
intelligence. There are two types of design flows for implementing applications using partial
reconfiguration — Difference based flow and Module based flow. Difference based flow is used
for making small modifications to the design while the module based flow is used for replacing
hardware modules in the design. Tool chains supporting designs using partial reconfiguration
are available from different vendors.
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Image Processing with Partial Re-
configuration
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Image processing is ubiquitous these days with areas of applications ranging from the auto-
motive domain to medical diagnosis. Today, most devices routinely employ image processing
in some form or the other — state-of-the-art cameras rely on sophisticated image process-
ing algorithms instead of photographer’s skill, high-end laptops and smart phones use face
recognition for security purposes to name a few. There is significant interest in the research
community worldwide to improve the performance of devices utilising these complex image
processing applications.

Image processing is a field of mathematics and computer science which deals with analysis of
images to improve their quality or derive meaningful information from them. Formally, an
image can be defined as a two dimensional arrangement of pixels, each of which has a value.
The value defines the appearance of the pixel with respect to the model in use. The number
of bits used to represent the value of a pixel defines its depth. The most popular model to
represent pixels of coloured images is the RGB model, where each pixel value is composed
of three spectral components, also known as channels - Red (R), Green (G) and Blue (B).
These spectral components represent a cube, also known as the RGB cube, in the Cartesian
coordinate system. Gray scale images can also be represented using this model, however in
such cases, each pixel is composed of only one channel and their values represent the diagonal
of the RGB cube. More details about the RGB colour model is available in pages 401 - 403
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of [37]. Most coloured images being processed on computers have a 24-bit depth, with 8-bits
representing each channel.

With the advent of sophisticated image sensors and High Definition (HD) video technologies,
the number of pixels in an image has increased. The widely used High Definition Video
format, 1080p, has dimensions of 1920 x 1080, i.e. 2,073,600 pixels, each pixel having a 24-bit
depth. With such high data volumes, even simple image processing operations require a large
number of computations. To improve the performance of these image processing algorithms,
the spatial parallelism of the image data and the temporal parallelism of the algorithm has
to be utilised by using multiple processor cores or customised architectures. This chapter
discusses image and video processing algorithms which are interesting from the point of view
of reconfigurable computing especially with respect to the use of partial reconfiguration.

3.1 Applications of Image Processing

The importance of image processing in today’s world can be summed up with the fact, that
there is almost no technical area that does not benefit from it. Image processing is used
in medical applications for obtaining X-Ray images to diagnose the injuries to the skeletal
system or for obtaining angiograms to locate clogged arteries and veins. It is used by disaster
management departments for operational preparedness against storms, cyclones etc. by pro-
cessing satellite images of the earth’s atmosphere. Image processing applications are popular
with law enforcement agencies world wide for applications ranging from forensic analysis to
detecting counterfeit currency. Sky is the limit for applications of image processing. More
applications of image processing are described in the Chapter 1 of [37].

3.2 Image Processing Algorithms with Partial Reconfiguration

This section describes image processing algorithms which are interesting for this thesis, from
the point of view of implementation using partial reconfiguration. Applications which al-
low multiplexing of resources when implemented on FPGA are apt candidates for partial
reconfiguration based designs. The algorithms covered in this section are similar to an im-
age processing pipeline where each hardware module performs an image processing step and
passes the result to the next module for the next step. During each image processing step, the
FPGA resources responsible for performing the other steps are not used. This characteristic
makes such algorithms suitable for implementation with partial reconfiguration.

3.2.1 Morphological Image Processing

Morphological Image Processing is the application of mathematical morphology on digital
images for transforming them for various reasons like removing noise, isolating or joining
regions, finding intensity bumps etc. All morphological image processing algorithms are based
on two main operators, viz. Dilation and Erosion. The Dilation operator can be thought of
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as local maximum operator, which causes bright regions within an image to grow. Erosion on
the other hand can be thought of as local minimum operator, which results in reduction of
bright regions within the image.

From the many morphological image processing algorithms, this thesis focusses on Opening,
Closing and Morphological Gradient. The flow diagram for computing opened, closed and the
morphological gradient of an image is shown in Figure 3.1 and 3.2.

Figure 3.1: Flow diagram for Morphological Opening and Closing

• Opening : Opening is the application of the Erosion operator followed by the Dilation
operator. It is mainly used for separating regions in binary images before counting them,
e.g. counting of cells in a microscopic slide.

• Closing : Closing is the application of the Dilation operator followed by the Erosion
operator. It is used as a step in other sophisticated image processing algorithms related
to connected components. It is also used for reducing noise driven elements.

• Morphological Gradient : Morphological gradient is the absolute difference between
the dilated image and the eroded image. This operation is used mainly for isolating
perimeters of blobs.

Figure 3.2: Flow diagram for Morphological Image Gradient
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(a) Reference Image (b) Closing (c) Opening (d) Morph. Gradient

Figure 3.3: Morphological Image Processing - Opening and Closing

Figure 3.3 shows the effect of these operations on a standard test image1. The morphological
image operations in the figure are executed on a 3 x 3 pixel neighbourhood. As seen, open-
ing results in separation of regions, while closing removes noise segments by blurring. The
morphological gradient operation isolates the perimeters of the bright regions.

By means of partial reconfiguration, morphological image operations can be implemented on
an FPGA with two hardware modules - one performing Dilation and the other performing
Erosion instead of a dedicated module performing the entire operation. The use of partial
reconfiguration for the operations Opening and Closing provides certain specific advantages,

1. Opening and Closing differ only by the sequence in which the Dilation and Erosion
operators are applied. Using partial reconfiguration for implementing the functionality
with two hardware modules, as mentioned, makes it possible to have a flexible system
which can achieve Opening as well as Closing without any changes in hardware design.
With minor changes in scheduling of the cores i.e. changing the sequence in which cores
are loaded on the FPGA, the functionality can be changed from Opening to Closing and
vice-versa.

2. Opening and Closing differ from other operations when it comes to iterative processing.
When Opening is to be performed iteratively twice, the implied sequence of operation
is not Erode-Dilate-Erode-Dilate. Instead as shown in Figure 3.4, the required sequence
of operations is Erode-Erode-Dilate-Dilate. With a partially reconfigurable system, the
number of processing iterations can be changed without major changes to the hardware.
In absence of partial reconfiguration, the hardware would require resynthesis. As shown
in Figure 3.2, this advantage is also applicable for the morphological image gradient
operation.

Mathematical details of the Dilation and Erosion operators along with all the other morpho-
logical image operations are given in the Chapter 5 of [17]. The implementation details of
these applications using partial reconfiguration are covered in Chapter 5 of this report.

1Reference image - Lenna, Source - http://en.wikipedia.org/wiki/File:Lenna.png, License - Use of this picture
is "overlooked" and by implication permitted by the copyright holder - Playboy
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Figure 3.4: Flow Diagram for iterative Morphological Opening and Closing

3.2.2 Lane Detection

Lane detection is one of the more popular applications of image processing and is widely used
in the Lane Departure Warning Systems, which warns drivers if they change lanes without
proper indication [38]. Figure 1.1 shows the use of image processing for identifying lanes on
a highway.

Many different algorithms have been proposed for lane detection [39, 38]. Figure 3.5 shows a
simplified flow diagram of the steps involved in lane detection, as proposed in [39].

Figure 3.5: Steps involved in lane detection

For detecting lanes from an input image, it is first converted to gray scale and filtered for
removing noise elements. Edges in the resulting image after noise removal are detected using
edge detectors like Sobel or Canny. Finally, Hough transform is used to separate straight
edges representing lanes from the others. Detected lanes can be marked on the input image
for display. Thus, the algorithm forms an image processing pipeline with five processing steps.
Details on each of the mentioned image operations are provided in [17]. Each step of the image
processing pipeline can be performed using a separate hardware module which is loaded into
the FPGA based on a schedule, thus implementing it using partial reconfiguration. The
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implementation of the Lane Detection algorithm using partial reconfiguration is explained in
Chapter 5 of this thesis.

3.2.3 Background Subtraction

Background Subtraction is an image processing step, mainly used in video security applications
for separating the foreground objects from the background for analysis. The background is
defined as the part of the frame which remains static or in a state of constant motion. From the
point of view of a security camera at an Automated Teller Machine, the background is perhaps
the ceiling of the room where the machine is placed and the customer using the machine is
the subject, whereas for a camera at a traffic signal, the moving vehicles are considered as
background. With background subtraction, the uninteresting parts of the frame are removed
to focus the processing efforts at the actual subject.

Figure 3.6: Steps involved in background detection by means of frame differencing

While there are many image processing algorithms for modelling the background of a scene
and subtracting it from the frame, this thesis considers one of the simpler algorithms for
implementation. Frame differencing is based on subtracting an image frame from a frame
occurring after some delay and then enhancing the difference between them. Anything that
is static between the two frames will not be visible in the final result. The resulting image
would contain edges of the moving objects and can be used for indicating regions of motion.
The flow diagram depicting the steps involved in frame differencing is shown in Figure 3.6.
In short, frame differencing can be implemented by converting the input image to a gray
scale image and subtracting it from the gray scale image of the previous frame. The resulting
difference may be thresholded for enhancing the regions of motion.

3.3 Image Processing in Software

This thesis is interested in software image processing libraries which allow the design of im-
age processing applications to later convert these to hardware descriptions. MATLAB and
OpenCV suit the purpose well. MATLAB provides models which can be synthesized into
hardware descriptions while OpenCV is implemented in C/C++ which can be synthesized
by high level synthesis tools. This thesis utilises OpenCV to generate hardware descriptions
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for image processing applications because MATLAB is proprietary and requires additional
licensing.

3.3.1 Open Computer Vision (OpenCV)

Open Computer Vision, popularly known as OpenCV2, is a widely used computer vision
library for image and video processing. Its origin lies in an Intel research initiative for making
computer vision infrastructure universally available. One of the primary goals of the OpenCV
development was to provide open and optimised code for basic vision infrastructure. It is
highly optimised for performance compared to its peers. The performance comparison of
OpenCV against the other available open source vision libraries is given in Chapter 1 of
[17].

OpenCV not only provides primitives for image processing, but also provides a platform
independent graphics tool kit known as HighGUI. HighGUI abstracts the operating system
calls for accessing devices like cameras to query frames, for accessing file systems to load or
save images and for accessing the windowing system to display images and videos. OpenCV
provides high level image processing operators for operations like smoothing, segmenting,
tracking etc. Detailed documentation for the API’s provided by OpenCV is available on the
web and in [17].

3.4 Image Processing with FPGAs

Image processing has been a potent driver effecting improvements in the reconfigurable archi-
tectures mainly because of the unacceptable performance of the general purpose computing.
The introduction of this chapter already explains the inability of general purpose processor
architectures to meet real time processing constraints of image processing algorithms like the
frame rate due to the large amount of data which needs processing along with high bandwidth
requirements with the memory where the images are stored. On the other hand specialised
processor architectures can exploit the inherent parallelism in the image processing algorithms
and provide better performance. In accordance to Amdahl’s law, which states that the speed
up of a system is only limited by its sequential part, high speed-ups can be achieved for
image processing algorithms, most of which can be highly parallelized using reconfigurable
architectures.

Image processing algorithms are classified in Chapter 6 of [18] as :

1. Local Algorithms - These work on data sizes smaller as compared to the size of the image
and are local temporally and spatially, e.g. Convolution, Thresholding etc. Generally
these algorithms can be optimised to work with a single pass through the image data.
All the algorithms described in Section 3.2 belong to this category.

2http://opencv.org/documentation.html
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2. Global Algorithms - These depend on the data of the entire image and require multiple
passes through the data. E.g. Fast Fourier Transform, statistical histogram techniques
etc.

The key to achieve high speed ups with specialised architectures is to reduce the number
of times the data is accessed. Hence higher speed ups can be obtained using customised
hardware for implementing local algorithms. Detailed information for implementing local
image processing algorithms like Convolution, Morphological Operations etc. on FPGAs is
given in Chapter 6 of [18]. Such architectures are generally designed at Register Transfer Level
(RTL) and hence consume lot of time and effort for development and verification. Because of
the higher abstraction level provided by high level synthesis for design, it is a faster method
for the development of such architectures.

As mentioned in Chapter 1, this thesis does not deal with the development of customised
hardware for image processing applications, rather it seeks to explore the usage of partial
reconfiguration in implementing them. Hence this thesis prefers using Intellectual Property
(IP) cores which are pre-designed and verified or which can be easily synthesized from a high
level description instead of developing it from scratch.

3.4.1 High Level Synthesis Video Library

In order to simplify the development of FPGA based hardware architectures for image process-
ing, Xilinx Inc. released a C++ library of synthesizable functions. This library of functions,
known as the Vivado High Level Synthesis (HLS) Video Library, contains data structures and
functions corresponding to the ones implemented in OpenCV. This library was released with
the v2013.1 of Vivado High Level Synthesis tool. C++ programs invoking these functions
can be converted to IP cores performing the same functionality using high level synthesis, as
described in Section 4.2.1. Currently in its second release, the functionality of HLS Video
Library is limited compared to OpenCV but still provides enough functions for developing IP
cores which function as image processing pipelines.

Along with functions for processing images in FPGAs, the library also provides synthesiz-
able functions to convert an image into sequence of raw data, stream, and vice-versa to help
interface the generated IP core with other cores. Since Xilinx Inc. has adopted Advanced
eXtensible Interface (AXI) as standard interconnection for its recent products, these functions
convert images to/from AXI4-Streams3, to be specific. These functions abstract the program-
mer from issues pertaining to interfacing the cores and setting up communication between
them.

The HLS Video Library is important from the point of view of the thesis as it provides a
mechanism to generate of image processing cores, which are required for implementing image
processing applications with partial reconfiguration. Further, the fact that most functions
from HLS Video Library correspond to functions in OpenCV, can be exploited for easier
validation of the generated IP cores [40]. All the details on utilising the Vivado High Level

3Details on AXI and AXI4-Streams are provided in Chapter 4
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Synthesis tool to create the image processing IP cores are described in Chapter 4. A detailed
description of all IP cores generated using HLS Video Library along with their validation is
provided in Chapter 5.

Summary

Image Processing applications are widely used in today’s world, however given the computa-
tional complexity of these algorithms, they are not suitable for execution on general purpose
processors. Usage of customised hardware architectures for image processing is very popular
and has been a key driver in development of these architectures. Image processing algo-
rithms are implemented in many open source libraries which can be utilised for creation of
customised hardware by means of high level synthesis. Image processing applications like
Morphological Image Processing, Lane detection and Background Subtraction are suitable for
implementation using partial reconfiguration as a part of the thesis. These algorithms can
be implemented with the help of the functions provided by OpenCV, one of the most widely
used image processing libraries. The HLS Video Library - a synthesizable version of Open
CV, developed by Xilinx Inc., can be utilised for synthesising IP cores of for image processing
applications from software implementations.
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One of the primary goals of this thesis is to evaluate the effectiveness of partial reconfigura-
tion as a design pattern on runtime reconfigurable architectures with a processor core. This
chapter gives a brief introduction of reconfigurable architectures which embed a processor
and introduces Zynq-7000, a recent product from Xilinx Inc., which is an example of the
mentioned architecture.

Embedded processors in reconfigurable architectures can be classified as soft processors, which
are built using FPGA resources, and as hard processors, which are fabricated on dedicated
silicon. Such architectures allow optimisation of tasks between hardware and software to
maximise performance and efficiency. Software bottlenecks can be offloaded to hardware
accelerators which are usually connected to the embedded processor with low latency channels
[41]. Soft processor cores cost in terms of FPGA logic resources only and hence can be
instantiated on any FPGA with sufficient resources. Hard processors are available on certain
product families only, e.g. Arria V SoC and Cyclone V SoC families from Altera Corp.
and Zynq-7000 family from Xilinx Inc. Hard processors provide better CPU performance
compared to the soft processors and hence preferred for the thesis.

Zynq-7000 family is chosen for the implementation of the image processing applications in-
troduced in Chapter 3 considering the availability of prototype boards and Xilinx tool chain
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4 Zynq-7000 for Partial Reconfiguration

licenses within the OTERA1 project. The Zynq-7000 family targets high end embedded sys-
tems with a processor centric approach for reconfigurable computing. Zynq-7000 supports
wide application domains ranging from automotive applications to industrial automation.
The upcoming sections enumerate the features of Zynq-7000 family which are attractive from
the point of view of the thesis and further explains the tool chain required for implementing
partial reconfiguration based image processing applications on Zynq-7000 devices.

4.1 Zynq-7000 All Programmable SoC - Salient Features

The Zynq-7000 family consists of devices which integrate a dual core ARM Cortex A9 with
a reconfigurable fabric based on 28 nm technology. This combination provides high I/O
bandwidth with low latencies that cannot be matched by the older two chip solutions with
the processor and the reconfigurable fabric on different devices.

The brain of the device is the Application Processing Unit (APU) containing two ARM Cortex
A9 processors along with their NEON co-processors for supporting media and signal processing
with its Single Instruction, Multiple Data (SIMD) architecture. The ARM processors are
high performance and low power cores which contain separate 32 KB L1 caches for data and
instructions and a shared 512 KB L2 cache along with 256KB on-chip memory. Hardware
support for maintaining coherency between the multi-level caches is available in the device.
The APU, along with other peripherals for I/O, forms the Processing System of the device.

The reconfigurable fabric on these devices is fabricated using the state-of-the-art high-performance
low-power (HPLP), 28 nm, and high-k metal gate (HKMG) technology. The reconfigurable
fabric provides a wide range of user configurable resources like the Configurable Logic Blocks
(CLBs), 36 Kb Block RAMs, Digital Signal Processors with a resolution of 48-bits, Analog
to Digital Converters, Configurable I/O blocks etc. All these reconfigurable resources within
the device form the Programmable Logic.

The Processing System and Programmable Logic communicate with each other through
high bandwidth interconnects based on ARM Advanced Microcontroller Bus Architectures
(AMBA). AMBA is a bus architecture introduced by ARM Ltd. which specifies on-chip buses
used in System on Chip architectures. The most important of the buses defined by the latest
version of AMBA, AMBA v4, with respect to Zynq-7000 family is the Advanced eXtensible
Interface (AXI). As shown in figure 4.1, there are four high performance AXI Master ports in
the Programmable Logic, four general purpose AXI ports (two masters and two slaves) and an
Accelerator Coherency Port (ACP) based on AXI. Together, all these interfaces provide a high
bandwidth for communication between Processing System, Programmable Logic and exter-
nal memory. Figure 4.1 shows the main components (Processing System and Programmable
Logic) of the Zynq-7000 device. Further notes on the features of the Zynq-7000 platform are
given in [42].

The Processing System, which is encapsulated by AMBA interconnects, can be easily inter-
faced with Xilinx Intellectual Property (IP) cores, implemented in Programmable Logic, as

1Refer Chapter 1 for details
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Xilinx has adopted AXI as the standard interface for its IP cores. AXI4, the latest version of
AXI, as specified by AMBA v4, consists of three interfaces,

1. AXI4 : For high throughput communication including burst mode transfers with mem-
ory mapped peripherals,

2. AXI4-Lite : For low throughput and simplified communication, like reading and writing
of status/control registers etc. with memory mapped peripherals,

3. AXI4-Stream : For high speed streaming data between two IP cores.

IP cores with AXI4 interfaces, from different sources, can be integrated in the Programmable
Logic and interfaced with the Processing System. Based on the bandwidth requirements, suit-
able AXI4 interfaces can be used for this interfacing [43]. Details on programming the ARM
cores and interfacing them with AXI4 compliant IP cores implemented in the Programmable
Logic are provided in [30].

Figure 4.1: Zynq-7000 Extensible Processing Platform [44]
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The most attractive feature of Zynq-7000 from the point of view of this thesis is the presence
of a Processor Configuration Access Port (PCAP) which allows full as well as partial recon-
figuration of the Programmable Logic by the Processing System. This enables configuring
required hardware accelerators into the Programmable Logic at runtime by means of software
scheduler executed on the Processing System. Zynq-7000 platform is also supported by a huge
eco-system of operating systems including several Linux distributions. Operating System sup-
port eases the implementation effort of complex systems, like the ones implemented as a part
of this thesis, by providing adequate levels of abstraction to interact with the accelerators im-
plemented in the reconfigurable fabric. The success of this platform in implementing complex
image processing algorithms like Feature Detection has already been proven by [45].

4.1.1 Zedboard

Figure 4.2: Zedboard : Block diagram with important peripherals

Zedboard is a low cost development board which uses a device from the Zynq-7000 family.
It uses the device Z-7020 (part number - XC7Z020-CLG484 with speed grade -1) and has all
required peripherals for implementation of image processing applications. This device contains
reconfigurable fabric from the Artix-7 family which provides highest system performance per
dollar per watt among the others in the 7-series of Xilinx programmable logic and shows 50%
power reduction compared to the previous generations [23]. The Zedboard comes with 512
MB of onboard DDR3 memory and a SD-Card slot capable of hosting Linux file systems [46].
Figure 4.2 shows a block diagram depicting the important peripherals on the board.

4.2 Tool Flow

This section gives a short description of the tool flow involved in designing an embedded
processor based system which utilises partial reconfiguration. The choice of Zedboard dic-
tates the usage of Xilinx tool chain to avoid any incompatibilities. Xilinx Integrated Software
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Environment (ISE) Design Suite provides all the features required for the creation of highly
efficient core based designs and system integration along with support for partial reconfigu-
ration and debugging. All the design and implementation involved in the thesis utilised the
latest available version of the Xilinx ISE Design Suite - v14.6. Figure 4.3 displays the tool
flow for generation of bitstreams implementing image processing applications using partial
reconfiguration.

Figure 4.3: Xilinx Tool Flow

4.2.1 Vivado High Level Synthesis

Xilinx ISE Design Tool Suite provides Vivado High Level Synthesis (HLS) tool for creation
of functional specifications for an FPGA based design at an abstraction level higher than
the Register Transfer Level (RTL) using C, C++ or SystemC. Vivado HLS tool is capable
of converting the functional specifications to their RTL equivalent (Verilog or VHDL), which
can then be synthesized for any target FPGA architectures. The tool also provides features
for pre-synthesis and post-synthesis validation of designs by means of test benches written in
C or C++. Thus, Vivado HLS tool allows the users to focus on specifying the functionality of
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the system instead of its logic implementation enabling faster design and validation of systems
[47].

Vivado HLS can utilise the HLS Video Library, described in Section 3.4.1, for synthesis of
image processing functionalities of OpenCV into FPGA based designs and their validation
using the latest OpenCV library. Vivado HLS provides the feature of wrapping the generated
RTL descriptions with standard interfaces like FIFO, AMBA etc. and exporting it as an
Intellectual Property (IP) core to other tools in Xilinx ISE Tool Suite.

This thesis utilises Vivado HLS for generating IP cores wrapped with standard interfaces for
performing image operations. These generated IP cores are exported to Xilinx Embedded
Development Kit (EDK) after validation.

4.2.2 Xilinx Embedded Development Kit (EDK)

Xilinx EDK is a tool available within the Xilinx ISE Tool Suite used for design of embedded
processor based systems. The EDK consists of three components

• Xilinx Platform Studio (XPS) : Used for the design of the embedded processor hardware.

• Xilinx Software Development Kit (SDK) : Used for development of drivers and applica-
tion softwares to be executed on the embedded processor.

• Xilinx Intellectual Property Library : Provides verified IP cores which can be used as
building blocks for the embedded processor hardware.

Embedded processor systems incorporate one or more processors with many other peripherals
and memory blocks which are interconnected with processor buses. Software programs for
different applications, residing in the memory, can be executed on this customised hardware.
The EDK provides a development environment for the complete system - for customising the
hardware as well as for developing the application softwares. The XPS is used for integrating
and configuring different IP cores (processor as well as peripherals), available from the Xilinx
IP library and other sources. The designed hardware can then be exported to the SDK which
provides basic drivers for the application software, thus simplifying the process of application
software development [48].

This thesis uses EDK only for the design of the embedded hardware for implementing image
processing applications. Using XPS, the Processing System is interfaced with all the necessary
IP cores executing image processing applications. The thesis utilises the IP cores available
from the Xilinx IP Library for purposes ranging from data transfer to debugging. After all
the IP cores are interfaced, XPS is used for generating the netlists of the designed hardware
for the partial reconfiguration based design flow using the PlanAhead tool.

The detailed hardware design, as assembled using XPS, is explained in Section 5.1. The
software being executed by the Processing System, responsible for the reconfiguration and
implementation of image processing applications, is explained in Section 5.2.
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4.2.3 PlanAhead

PlanAhead is a design and analysis tool in the Xilinx ISE Design Tool Suite which sup-
ports module-based partial reconfiguration. PlanAhead features post-synthesis tools which
processes synthesized netlists and generates partial and full bitstreams for designs based on
partial reconfiguration. PlanAhead implements module based partial reconfiguration by al-
lowing the users to designate areas of the FPGA fabric as reconfigurable partitions. Parts of
the input netlists can be designated as reconfigurable modules and assigned to these recon-
figurable partitions. In-built design rule checker ensures the matching of the interfaces of the
reconfigurable partitions and the reconfigurable modules assigned to it. Bitstreams are gener-
ated by means of design configurations which map reconfigurable modules to the partitions.
Current version of the tool allows assigning only one reconfigurable module per reconfigurable
partition, hence only island style of placing the partitions is possible [1]. Multi-island style
of placing the partitions is achieved by creation of unique partial bitstreams for the reconfig-
urable module, each targeting a partition where module is to be loaded. Thus if an IP core is
designed to be loadable on N partitions, N partial bitstreams must be generated with each
bitstream targeting one partition.

PlanAhead is utilised by this thesis to create reconfigurable containers in the hardware as-
sembled using XPS. The IP cores, generated using the Vivado HLS tool, responsible for
performing image operations are marked as reconfigurable modules. PlanAhead generates
partial bitstreams for all these IP cores for implementing the image processing applications.

4.3 Design Choices

As mentioned in Section 4.1, Zynq-7000 devices contain a Processor Configuration Access Port
(PCAP) which can download partial bitstreams into the reconfigurable fabric. It is, hence, not
necessary to integrate hardware components like Internal Configuration Access Port (ICAP)
in the design to do the same. Also, encapsulation of Processing System with Advanced
Microcontroller Bus Architectures (AMBA) Interconnects makes it easier to interface it with
any IP core having AMBA interfaces. Finally, the tool chain from Xilinx Inc., described in
Section 4.2, makes available all the tools required for designing a complex image processing
system using partial reconfiguration. Thus, the choice of Zynq-7000 device for implementation
simplifies the design considerations.

The main design considerations for the implementation are:

• Achieve high bandwidth for communication between the Processing System and the
Programmable Logic,

• Perform module based partial reconfiguration, considering the modules in the reconfig-
urable logic are complex and differ significantly,

• Use island style of placing the reconfigurable containers as the current version of PlanA-
head cannot support other styles,
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• Use software controlled partial reconfiguration of the Programmable Logic via the PCAP,

• Use IP cores generated from the high level synthesis of image processing operations
using the HLS Video Library, described in Section 3.4.1.

Of all the design goals, the goal to achieve high bandwidth between Processing System and
the Programmable Logic is the most critical considering its impact on performance and design
approach. The two possible design options, explored during the design phase of the thesis,
are explained in the following sections.

4.3.1 Design with FIFOs - Xillinux

Xillinux is a proprietary Linux distribution from Xillybus Ltd. which extends the Zedboard
into a Linux system based on Ubuntu 12.04 LTS. Unlike the Linux distributions for desktops,
Xillinux is a combination of software and hardware, software executed by Processing System
and hardware implemented in Programmable Logic. The hardware design features a VGA
adapter which can be connected to any compatible monitor for display. Further, the USB-
OTG port of the Zedboard can be attached to any Linux compliant keyboard and mouse which
it turns into a full fledged graphical desktop. The selling point of Xillinux is the presence of an
IP core, Xillybus, in its hardware design, which provides FIFO interfaces between Processing
System and Programmable Logic. Xillinux software comes with the required Linux drivers
which provides the programs running in Linux userspace interfaces for interaction with the
FIFOs. Data communication between Processing System and Programmable Logic, thus
simplifies to just reading from and writing to certain device files in the Linux file system.
Figure 4.4 shows the FIFO based architecture implemented in Xillinux. Xillybus Ltd. also
provides a web interface for customising the FIFO interfaces with respect to the data width
and bandwidth expectations. Customised cores can be downloaded from the web interface
of Xillybus Ltd. almost immediately2. The standard FIFOs available with Xillinux have a
width of 32-bit and provide a bandwidth of about 200 MB/sec.

As the goals of the thesis are limited to evaluation of partial reconfiguration on FPGAs, the
usage of Xillinux and its proprietary IP cores for implementation should not be any cause of
licensing based concerns. Xillinux is free for any use, as long as the usage reasonably matches
the term "evaluation". There are no plans to extend the implementation for any purpose
beyond evaluation and hence free evaluation license would suffice from the point of view of
this thesis.

By providing ready to use communication channels between the Processing System and Pro-
grammable Logic, Xillinux simplifies the application development on the Zedboard. The
application logic on the other side of the FIFOs could be IP cores responsible for image pro-
cessing. Detailed tutorials for synthesising cores with FIFO interfaces are available in Xillinux
documentation. Images to be processed can be sent to the image processing cores through
the Write FIFO and the processed images can be read back using the Read FIFO. These
image processing IP cores can be loaded on to the reconfigurable fabric based on requirement

2URL for the web interface : http://www.xillybus.com/custom-ip-factory
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Figure 4.4: Xillinux FIFO based architecture on Zedboard [49]

using runtime partial reconfiguration, thus forming the reconfigurable part of the design. The
Xillybus cores along with the FIFOs and the VGA cores would form the static logic of the
design.

Using the FIFO based architecture provided by Xillinux though have some drawbacks also.
Firstly the Xillybus core, which manages all the FIFOs to and from Programmable Logic, is
available only as a netlist. The source code and the behavioral models of the core, which may
be required for simulation during development, are not available from the vendor, Xillybus
Ltd. The main drawback of this design lies in the fact that processor utilisation will be very
high as the Processing System has to consistently write to and read from FIFOs, just like
in Programmed I/O. For the thesis implementation, the Processing System has to read the
raw data of the huge images kept in the external memory and write it to FIFO and vice
versa through one of the high performance AXI port between the Processing System and
Programmable Logic. This frequent access of the external memory by the Processing System
results in high processor utilisation and high latency. A DMA based system would relieve
the Processing System of its task of accessing the external memory and hence improve the
performance of the implementation.

4.3.2 Design with AXI4-Streams - Video DMA

Xilinx Inc. has presented, through reference designs, the use of Video Direct Memory Access
(VDMA) for implementing image/video based systems on the Zynq-7000 devices [11, 40].
Video DMA is a soft core which provides high bandwidth access between external memory
and IP cores with AXI4-Streams. The Video DMA IP core has two AXI4-Streams, one for
transferring data from memory to the IP core and other in the reverse direction, to interface
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Figure 4.5: Using Video DMA for interfacing Processing System with application cores on
Zynq-7000

with the IP cores. In the mentioned reference designs, Video DMA is configured to access
image data kept in the external memory through one of the High Performance AXI ports
in the Programmable Logic and stream it to the IP cores. These IP cores, designed for
image processing, stream back the processed images to the Video DMA which writes it to the
specified location in the external memory through the same AXI port. The figure 4.5 shows
the use of Video DMA to interface image processing IP cores with the Processing System.

Use of Video DMA, which uses one of the high performance AXI port, provides a throughput of
around 1,200 MB/s per channel compared to around 200 MB/s in FIFO based Programmable
I/O described in Section 4.3.1 [30, 49]. In addition to the performance gain, the load on the
Processing System reduces on using this approach. These reasons build a strong case in favour
of using this approach as against the use of pre-designed FIFOs from Xillinux.

Summary

For evaluating the efficacy of partial reconfiguration based design, this thesis implements im-
age processing applications on the Zedboard, which uses a Zynq-7000 device. Zynq-7000 has
a dual core ARM Cortex A9, known as Processing System, and state-of-the-art reconfigurable
fabric, known as Programmable Logic, which are interfaced with each other using high band-
width AMBA interconnects. The image processing applications are implemented using the
module based partial reconfiguration design paradigm in which the reconfigurable containers
follow island style of placement. The process of reconfiguration is controlled through soft-
ware executing on the Processing System. The primary challenge for designs using Zynq-7000
platform is achieving high bandwidth of communication between Processing System and Pro-
grammable Logic. FIFO based options provided by Xillinux, a Linux distribution, and Video
DMA based design are two options explored for this purpose.
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Chapter 4 introduced Zynq-7000 as the selected device for implementing image processing
applications using partial reconfiguration. This chapter presents the hardware and software
design for the implementation of the image processing applications which were presented in
Section 3.2.

Section 4.3 enumerates the design goals for the implementation along with possible approaches
to achieve them. Of the two options, first using pre-designed FIFOs from Xillinux and second
using Video DMA Intellectual Property (IP) core, this thesis uses the latter option consider-
ing the tremendous performance gain that is achievable as explained in Section 4.3.2. This
decision also means that the optional goal of using DMA based solutions for implementation,
as mentioned in Section 1.2.3, can be achieved. The hardware design for the implementation
extends the Xillinux hardware, explained in Section 4.3.1, in order to utilise its inbuilt VGA
functionality which is not provided by the other Linux distributions for Zedboard. The ap-
plication software for the image processing applications is developed using the native GCC
compiler of Xillinux, purely for convenience reasons. Thus, the thesis utilises Xillinux only as
an operating system and not for its pre-designed FIFOs for data transfer between Processing
System and Programmable Logic of the Zynq-7000 device.
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5.1 Hardware Design

This section presents the hardware design for implementing the image processing applications
on Zedboard using partial reconfiguration. IP cores performing image processing operations
form the reconfigurable modules of the design. The static logic consists of Video DMAs for
fetching images from the memory and reset circuitry for the image processing IP cores.

5.1.1 Image Processing Cores - Reconfigurable Modules

In order to implement image processing applications on Zedboard using partial reconfigura-
tion, this thesis requires IP cores performing simple image operations. These IP cores form
the reconfigurable modules of the implementation. Image processing applications can be im-
plemented by loading the IP cores into reconfigurable containers based on an appropriate
schedule. For e.g. referring to the morphological image processing, described in Section 3.2,
Opening can be achieved by loading IP core capable of performing Erosion followed by IP
core responsible for Dilation. The IP cores performing different image processing operations
can be generated using Vivado High Level Synthesis tool with the HLS Video Library. Most
cores generated for use in thesis have three bus interfaces for connecting with the other IP
cores :

• Input Stream - An AXI4-Stream slave interface for acquiring images in 3-Channel RGB
format1. Can be connected to the AXI4-Stream master interface of a Video DMA or
another image processing core.

• Output Stream - An AXI4-Stream master interface for returning processed images in 3-
Channel RGB format. Can be connected to the AXI4-Stream slave interface of a Video
DMA or another image processing core.

• Configuration Interface - An AXI4-Lite slave interface for configuration. Configuration
data includes the dimensions of the images along with control commands for starting or
stopping the execution of the IP cores. The AXI4 master port to which this interface is
connected gets the responsibility of configuring the IP core.

We name such cores with three bus interfaces as TypeA cores. However, few image processing
operations require two input images for execution. Such cores are generated with two input
stream interfaces, one for each image i.e. four bus interfaces in total. We name these cores as
TypeB cores. The structure of these IP cores is shown in Figure 5.1.

The functionality of the generated IP cores is validated using the framework provided by
the Vivado High Level Synthesis tool. For this purpose, test benches written in C++ are
used. The Vivado High Level Synthesis tool uses this test bench for pre-synthesis and post-
synthesis validations. The test benches use OpenCV primitives for the purpose of generating
the reference images for validation. These images are compared with the images resulting from
the execution of the IP cores under test. For IP cores not using floating point operations,

1Refer Chapter 3 for description on pixel value representations.
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(a) TypeA - Core with three bus interfaces (b) TypeB - Core with four bus interfaces

Figure 5.1: Structure of Image Processing Cores generated using HLS Video Library

the validation is considered successful when the reference image generated by the OpenCV
functions match the image generated by the IP core completely. For IP cores using floating
point operations, the validation is considered successful, if the Peak Signal to Noise Ratio
(PSNR) of the image generated by the IP core when compared to the reference image is not
less than 30dB. A brief description of the PSNR algorithm for evaluating the quality of images
is given in [50].

The description of all the generated IP cores are listed below. A brief description on using
Vivado HLS tool for generating these image processing IP cores have been provided in Ap-
pendix A. The resource usage and performance for all these cores are provided in Appendix
A.2.

Morphological Image Processing

The morphological image operations for which IP cores were generated are mentioned below.

Dilation - Local maximum operator on a 3 x 3 pixel neighbourhood.

Erosion - Local minimum operator on a 3 x 3 pixel neighbourhood.

Opening - Erosion followed by Dilation operation on the input image. Both operations per-
formed on a 3 x 3 neighbourhood.

Closing - Dilation followed by Erosion operation on the input image. Both operations per-
formed on a 3 x 3 neighbourhood.

Morphological Gradient - Absolute difference of the result of Erosion and Dilation operations
on the input image. Both operations performed on a 3 x 3 neighbourhood.

All these image operations are elaborately explained in Section 3.2. All these operations
require only one input image and are hence designed as TypeA IP cores.
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Image Filters

These IP cores are designed to perform image filtering operations on a single image and are
hence designed as TypeA cores. The image filters implemented are

Gaussian Filter This filter is mainly used for reducing the noise elements in an image. This IP
core outputs the result of mathematical convolution of the image with a 3 x 3 Gaussian
kernel. The details of the operation are provided in the Chapter 5 of [17].

Sobel Filter This filter is used for computing the derivative of the image and can be utilised
for detecting edges. The generated IP core works on a 3 x 3 neighbourhood computing
1st order derivative along the X-axis of the image. The mathematical description of the
Sobel filter is given in the Chapter 6 of [17].

General Image Processing Operations

These IP cores perform general image processing operations on the input image(s). The cores
generated under this category are:

Loopback This IP core does not perform any image processing operation on the image, instead
just returns the input image as output. This core is designed as a TypeA core and used
mainly for bypassing any image processing operation in complex applications as well as
for testing and debugging the DMA transactions in the implementation.

Loopback 2 This IP core is similar to the Loopback core, but is designed as TypeB core.
Being a TypeB core, this core receives two input images, but it ignores the second input
and outputs the first one. This core is used when images need to bypass a container
meant for TypeB cores. The application of this core is more elaborately explained in
Section 5.3.2.

Image Subtraction This IP core is used for computing the absolute difference between two
images, the result of which is useful for several image processing applications. As this
operation needs two input images, the core is designed as a TypeB core.

Convert To Gray This IP core converts a colour image to gray scale image. OpenCV soft-
ware performing similar function in software takes as input a three channel RGB image
and converts it to a single channel gray scale image. However, owing to difficulty in
outputting single channel images of 8-bit depth through DMA channels designed for
handling three channel images of 24-bit depth, the IP core is designed to output three
channel image, where the pixel values of all the three channels are same and correspond
to the gray scale representation. This core is designed as a TypeA core.

Threshold This IP core converts a gray scale image to a binary image. Details of this image
processing operation is available in Chapter 5 of [17]. This operation generally works
only on single channel images resulting in single channel images as outputs. However
owing to the difficulty in handling single channel images of 8-bit depth, this IP core
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takes as input a three channel image and applies the thresholding operation on each of
the channels and outputs a three channel image.

Thus only two cores, Image Subtraction and Loopback 2, are designed as TypeB cores while
the rest are TypeA cores. All the generated IP cores are constrained to enable them to be
clocked with a 100 MHz clock. Complex image processing applications which can be broken
down to these smaller image operations can be implemented using partial reconfiguration.

5.1.2 Static and Reconfigurable Logic

This section describes the design of the static and the reconfigurable logic for the implemen-
tation of image processing applications using partial reconfiguration. This implementation
extends Xillinux hardware design, the files for which can be downloaded from the web page
of Xillinux2. The hardware design flow utilises XPS for integrating the Video DMA IP cores,
the image processing IP cores and other peripheral IP cores with the Xillinux VGA cores.
The following IP Cores from Xilinx IP library are used in the implementation:

• Processing System 7 : This core provides an interface around the Processing System of
the Zynq-7000 device [51].

• Video DMA : Soft core used for transferring images between memory and the image
processing IP cores with high bandwidth [52].

• AXI Interconnects : Used for interconnecting different IP cores using the AXI buses
[53].

• AXI General Purpose I/O : Used for interfacing reset signals from the Processing System
to the IP cores implemented in the Programmable Logic using AXI4-Lite [54].

The Xillinux hardware implementation utilises two of the four AXI High Performance Ports
available for the Programmable Logic to interface with the external memory. Of these two
ports, one is used by the hardware FIFOs of the Xillinux and the other by the VGA core
to access the frame buffer. However, since the implementation does not need the Xillinux
FIFOs, they are disconnected from the AXI High Performance Port and the port is reclaimed.
Thus, three AXI High Performance Ports are available for use. The Processing System has
four configurable clocks for the Programmable Logic - one of these is configured to 100 MHz
and utilised by all the bus interfaces and IP cores integrated into the Xillinux design.

The reconfigurable logic of the implementation consists of three reconfigurable containers of
almost equal size. Given the irregular layout of the reconfigurable fabric, restricting all the
containers to be of equal size is difficult. Hence one of the three containers, Container 1, is
slightly larger than the other equal sized containers. The containers are designed to be big
enough to accommodate the IP cores which are used as reconfigurable modules and still leave
enough resources for implementing the static logic. The resources allocated for the containers
are provided in Appendix A.2.

2http://www.xillybus.com/download
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These reconfigurable containers will undergo frequent reconfigurations and will interface with
the static logic consisting of Video DMAs and other peripherals using AXI4 interfaces. Hence,
the design has to take sufficient precautions to ensure that there are no pending transactions
on the AXI-bus when reconfiguration is in progress. Failure to do so can result in hung AXI
buses. Reference design from Xilinx handle this issue by applying reset to the cores inside the
containers throughout the reconfiguration process [11]. To achieve this, the design utilises the
memory mapped IP core — AXI General Purpose I/O, through which reset can be applied
to these containers by the software while executing the reconfiguration process.

With major design issues sorted out, what remains is the selection of AXI4 interfaces to
integrate the IP cores. To maximise throughput of Video DMA, it is interfaced with exter-
nal memory through a High Performance AXI Port between the Processing System and the
Programmable Logic using an AXI4-bus. All the IP cores in the design - Video DMA, AXI
General Purpose I/Os, Image Processing Cores etc. require configuration for which AXI4-Lite
interface is used. For this purpose a single AXI4-Lite bus is used to which the configuration
interfaces of all the IP cores are connected. This configuration bus connects to the Processing
System through one of the General Purpose AXI Port, giving it the responsibility of config-
uring all the IP cores in the design. The choice of AXI4-Lite as an interface for configuration
is justified by the fact that the volume of configuration data for all peripherals combined is
lower than the raw image data to be accessed by the Video DMA. The interfacing of all the
cores is shown in Figures 5.2 and 5.3.

The final step for the hardware design is the interfacing of the input and output interfaces
for all the containers. The IP cores in these containers can be connected to dedicated Video
DMA or the containers can be chained one after the other. Both these designs are described
in the following sections.

Independent Containers

This method of connecting reconfigurable containers uses dedicated Video DMA per container
making its functioning independent of the other containers. Since Video DMAs are connected
to AXI High Performance Ports only, the number of containers that can be created in the
design is limited by the availability of these ports. With three free AXI High Performance
Ports, only three containers can be connected to Video DMAs. Connection of one VDMA
to an image processing core is shown in Figure 4.5, the same is replicated thrice, with the
PlanAhead tool designating the image processing cores as reconfigurable modules. To make
each container function independent of the other, the reset circuitry developed with the AXI
General Purpose I/O also has to be replicated for all the three containers. Thus, during the
reconfiguration process of a particular container, only that container is held in reset state
while the other containers can continue to function. The hardware design for the scheme of
three independently fed reconfigurable containers is shown in Figure 5.2.

The use of one Video DMA per container allows the reconfigurable containers to have only
one input AXI4-Stream and one output AXI4-Stream. i.e. only TypeA cores can be loaded in
these containers. The containers are thus placed in multi-island style, as the used TypeA IP
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cores can be loaded in any of the containers. Hence, the image processing applications which
require the functionality of Image Subtraction cannot be implemented using this scheme.

Figure 5.2: Three Independent Reconfigurable Containers

With multiple independent reconfigurable containers for use, multiple image frames can be
processed in parallel. The performance of the implemented image processing applications, in
terms of the frame rate, depends on the scheduling mechanism used to process the input image
frames. Section 5.3 describes the scheduling mechanisms used for implementing different image
processing applications. This connection scheme is used for implementing morphological image
processing algorithms like Opening and Closing along with applications like Lane Detection.
This design is referred to as Design with Independent Containers in the rest of the thesis.

Chained Containers

The connection scheme of independent containers does not support loading of TypeB cores
which are required for implementing certain image processing operations. For creation of
reconfigurable containers with two input AXI4-Streams, two Video DMA cores are required.
However, as the number of AXI High Performance ports are limited, all containers cannot
be provided with two Video DMA cores for input. Instead, the containers are connected in
a chained manner, in which one container feeds its output to the next one connected in the
chain. The connection of these containers is shown in the Figure 5.3.

As depicted in the Figure 5.3, Container 1 has two input AXI4-Streams and can load only
cores of TypeB, while the other containers can load only the TypeA ones. One disadvantage of
this connection scheme is that since the containers are connected to each other, they cannot
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Figure 5.3: Three Chained Reconfigurable Containers

be operated independently. While reconfiguring one of the containers, all the others too must
be held in reset state to prevent them from initiating any AXI transactions with the container
under reconfiguration. This limits the availability of scheduling options while implementing
image processing applications. This connection scheme has been used for implementing ap-
plications like Background Subtraction and Morphological Image Gradient. This design is
referred to as Design with Chained Containers in the rest of the thesis.

5.2 Software Design

The software architecture for implementation of image processing applications follow layered
architecture as shown in Figure 5.4. The software needs to interact with hardware components
like Video DMA, Processor Configuration Access Port (PCAP) and AXI General Purpose I/O
etc., in order to perform partial reconfiguration and control the processing of images. Since
all these hardware components are memory mapped, it is possible to utilise the mmap()
and munmap()3 interfaces from Linux to read from and write to their control registers with
programs running at user-space using Algorithms 1 and 2. User-space drivers are simpler
to write and debug as compared to the kernel space drivers which provide slightly better
performance and system security but are difficult to debug as they require kernel modifications
[55]. User-space drivers are also flexible for modifications on account of the implemented
functionality. However, misconfiguration of these user-space drivers, e.g. configuring Video
DMA to overwrite memory controlled by Linux kernel, can be disastrous and lead to system
crashes. Despite this security flaw, user-space drivers are used to reduce development effort.

3Information about the functions mmap() and munmap() available in Linux man pages.
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Figure 5.4: Software Architecture for the Prototype

The slight performance penalty is accepted in return for the above mentioned flexibility. To
prevent mishaps, the application software is designed to perform sufficient feasibility checks.

Algorithm 1 Reading from Device Registers
1: procedure GetRegister(Offset)

{Feasibility check to verify if the address being read is within the device}
2: if (Offset < OffsetMax) ∧ (Offset >= OffsetMin) then
3: deviceP tr ← mmap(deviceAdr, range)
4: V alue← deviceP tr[Offset]
5: munmap(deviceP tr)
6: return(V alue)
7: end if
8: end procedure

As shown in Figure 5.4, the image and video processing applications form the topmost layer
in the architecture. These applications use the lower layer modules like the user-space drivers
for interacting with the hardware, the High GUI (described in Section 3.3.1) for displaying
the images after processing, the Open CV libraries for utilising the abstractions of image data
and the other standard C I/O libraries for printing to the console and acquiring user input.

Of the 512MB DDR3 memory available on board, 450 MB is reserved for the user-space and
the kernel space of Linux, while the remaining memory is designated for storing the partial
bitstreams of the image processing IP cores and the image frames being processed. Figure
5.5 shows the memory organisation of the implementation. The memory area allocated for
partial bitstreams is divided into bitstream slots, each slot of size 300KB. The size of partial
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Algorithm 2 Writing to Device Registers
1: procedure SetRegister(Offset, Value)

{Feasibility check to verify if the address being written is within the device}
2: if (Offset < OffsetMax) ∧ (Offset >= OffsetMin) then
3: deviceP tr ← mmap(deviceAdr, range)
4: deviceP tr[Offset]← V alue
5: munmap(deviceP tr)
6: end if
7: end procedure

bitstreams of all the used IP cores, as shown in Appendix A.2, does not exceed 300KB.
Similarly, the memory area for image frames are divided into smaller image slots, each of 1MB.
The images used for implementation in this thesis have a resolution of 640 x 480 pixels with
24-bit depth, which is approximately 900KB. Boundary checks make sure that Video DMA
transactions lie within the memory region meant for image frames and PCAP transactions lie
within the region meant for bitstreams.

Figure 5.5: Memory Organisation for the Prototype

The application software implementing any image processing or video processing algorithm
starts with a one time configuration of the AXI High Performance ports which interface with
the used Video DMAs. The image frames are acquired from a camera or a video and stored in
the image frame slots. The reconfigurable containers are loaded with IP cores responsible for
the desired image processing operations and the cores are executed with the corresponding
Video DMAs configured to feed them the input images. The processed images returned by the
containers are stored in the image frame slots and later displayed using the GUI libraries.
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Algorithm 3 Scheduling of IP cores for parallel execution using three independent containers
1: procedure Main

{Software for controlling Partial Reconfiguration}
2: Configure AXI-HP ports to 64-bit width to interface with Video DMA
3: Reset all the Video DMAs
4: while true do
5: Query for image frame from camera/video
6: if IP core in Container 1 is to be changed then
7: Assert reset signal for Container 1
8: Perform reconfiguration and wait till it is over
9: Deassert reset signal for Container 1

10: end if
11: Execute Container 1 and its Video DMA
12:
13: Query for image frame from camera/video
14: if IP core in Container 2 is to be changed then
15: Assert reset signal for Container 2
16: Perform reconfiguration and wait till it is over
17: Deassert reset signal for Container 2
18: end if
19: Execute Container 2 and its Video DMA
20:
21: Query for image frame from camera/video
22: if IP core in Container 3 is to be changed then
23: Assert reset signal for Container 3
24: Perform reconfiguration and wait till it is over
25: Deassert reset signal for Container 3
26: end if
27: Execute Container 3 and its Video DMA
28:
29: while Container 1 is not idle do
30: wait
31: end while
32: Display output of Container 1
33:
34: while Container 2 is not idle do
35: wait
36: end while
37: Display output of Container 2
38:
39: while Container 3 is not idle do
40: wait
41: end while
42: Display output of Container 3
43: end while
44: end procedure
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The basic sequence of operations for processing three image frames in parallel using three
independent containers, using one container per frame, is given in the Algorithm 3. Based on
the number of containers used, the algorithm must be modified. Applications can appropri-
ately modify the algorithm for reconfiguring the containers with desired cores and then using
it as an image processing pipeline with the image frame slots in memory behaving as pipeline
registers. In such a case, the input image is fed to Container 1, while the output of Container
1 is given to Container 2 and so on. The final processed image is obtained from the container
which is the last stage of the pipeline.

While using the hardware design with chained containers, the above mentioned algorithm
needs to be modified for performing partial reconfiguration of all three containers one after
the other while all of them are held in reset state. The input images are fed to Container
1 while the processed images are obtained from Container 3. Due to the design, parallel
processing of images using multiple containers is not possible.

The application software currently polls to check the completion of the image processing op-
erations and the reconfiguration process. Instead of this polling, interrupt based mechanisms
can be used. However Linux does not provide interfaces for overriding or implementing in-
terrupt service routines in user-space. Theoretically, it is possible to implement a generic
interrupt service routine in kernel space and intimate user-space processes by means of sig-
nals. However, considering the complexity brought along by modifications of Linux kernel,
this thesis uses polling in the current implementations.

The next section describes all the different image processing algorithms implemented with
the hardware utilising the three independent containers or the three chained containers along
with the schedule used for partial reconfiguration.

5.3 Scheduling of Partial Reconfiguration

Chapter 3 introduced different image processing applications which provide good use cases
for study of partial reconfiguration. This section deals with the implementation of those
image processing algorithms by means of software based static schedules for loading the image
processing IP cores into the reconfigurable containers. Applications have been implemented
with different schedules, in order to evaluate the impact of these software schedules on their
performance.

5.3.1 Morphological Image Processing

Opening and Closing of Images

The morphological image operations, Opening and Closing, are implemented using the Dila-
tion and the Erosion IP cores with a two-step schedule. These operations are implemented
using the hardware design with three independent containers, explained in Section 5.1.2. The
Table 5.1 presents the schedule for the implementation of a single iteration of Opening and
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Closing using all the three available containers. In this schedule, each container processes one
image frame completely, thus enabling parallel processing of three image frames to provide a
better throughput. The resulting image of the first step is given as input to the same con-
tainer at the second step. The output of the second step is the resulting processed image.
The execution of this schedule is shown in Figure 5.6.

Opening Closing
Cont. 1 Cont. 2 Cont. 3 Cont. 1 Cont. 2 Cont. 3

Step 1 Erosion Erosion Erosion Dilation Dilation Dilation
Step 2 Dilation Dilation Dilation Erosion Erosion Erosion

Table 5.1: Schedule for Morphological Image Processing - Opening and Closing

Figure 5.6: Execution of single iteration of Closing using three reconfigurable containers

For multiple iterations of the operations, each step of the schedule is repeated as many times
as the number of iterations desired. This is different from the conventional idea of iterations
where the entire schedule is repeated. This is briefly explained in Section 3.2 of this thesis and
in Chapter 5 of [17]. The execution of the schedule for performing n-iterations of the Closing
operation is shown in Figure 5.7. It can be observed that the number of reconfigurations per
processed frame remains constant for the operation irrespective of the number of iterations
performed.

Figure 5.7: Execution of n-iteration of Closing using three reconfigurable containers for a
single image frame
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These operations can also be implemented using static hardware, where one container is pre-
loaded with the Dilation IP core and the other with the Erosion IP core. These can then
work in tandem to achieve the functionality of Opening or Closing. Such an implementation
does not use partial reconfiguration. The Figure 5.8 shows computation of a single iteration
of Closing using the described static hardware. This implementation can also be used to
perform Opening or Closing iteratively by appropriately using the preloaded cores to achieve
multiple dilations and erosions.

Figure 5.8: Execution of single iteration of closing using static hardware

The evaluation results for this application with all these different schedules are presented in
Section 6.2.1.

Morphological Gradient

Like the morphological image processing applications of Opening and Closing, Morphological
Gradient is also implemented using the Dilation and the Erosion IP cores. However, as
mentioned in Section 3.2, Morphological Gradient involves subtracting two images. Hence, it
can be implemented only on the hardware design with chained containers. This is because
the IP core for subtracting two images can only be loaded in the Container 1 of the design
with chained containers, described in Section 5.1.2. The schedule for the implementation of
the application is given in Table 5.2.

For the single iteration of this application, the input image is fed to Container 1 during Step
1. The resulting dilated image is stored in the memory and the input image is again given to
Container 1 after reconfiguration for performing Step 2. The resulting eroded image is also
stored separately in the memory. The dilated image, from Step 1, and eroded image, from
Step 2, are given to Container 1 for subtraction in the next step to get the morphological
gradient of the input image. The execution of this schedule for one iteration is shown in
Figure 5.9.

For multiple iterations, multiply dilated and eroded images need to be stored separately and
passed as input to the Image Subtraction core. The schedule presented in Table 5.2 must be
modified according to the number of iterations, just as in the case of the other morphological
image operations — Opening and Closing.
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Single Iteration Three Iterations
Cont. 1 Cont. 2 Cont. 3 Cont. 1 Cont. 2 Cont. 3

Step 1 Bypass Dilation Bypass Bypass Dilation Dilation
Step 2 Bypass Erosion Bypass Bypass Dilation Bypass
Step 3 Subtraction Bypass Bypass Bypass Erosion Erosion
Step 4 Bypass Erosion Bypass
Step 5 Subtraction Bypass Bypass

Table 5.2: Schedule for Morphological Image Processing - Morphological Gradient

Figure 5.9: Execution of single iteration of Morphological Image Gradient

Unlike in Opening and Closing, for Morphological Gradient the number of reconfigurations
per processed frame depends on the number of iterations to be performed. The number of
reconfigurations required for different number of iterations of Morphological Gradient is given
in the Table 5.3. It can be seen that performing the operation iteratively thrice requires more
reconfigurations as compared to performing it four times. This anomaly is attributed to the
hardware design with the chained containers and the developed schedule for reconfiguration.
Its impact on the performance of the implementation is presented in the Section 6.2.1.

No.of Iterations No. of Reconfigurations
1 5
2 8
3 9
4 8

Table 5.3: Number of reconfigurations per processed image - Morphological Gradient

5.3.2 Background Subtraction

As explained in Section 3.2, this thesis implements Frame Differencing, a method of back-
ground subtraction which can indicate regions of motion in an image frame. This application
requires capability of subtracting an image from another and is hence implemented using the
hardware design with chained containers. As explained in Section 3.2, this application takes
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the image frames of a continuous video as input and outputs the edges of moving objects
in those frames. The required IP cores to implement this application are Image Subtraction,
Threshold, Convert To Gray. The background subtraction is performed in two steps, as shown
in Table 5.4.

Container 1 Container 2 Container 3
Step 1 Bypass Convert To Gray Bypass
Step 2 Image Subtraction Threshold Bypass

Table 5.4: Schedule for Background Subtraction

In the first step, the input image is fed to Container 1, which simply feeds it to Container
2. At the end of Step 1, gray scale image of the current frame is available from Container 3
which is stored in the memory. In the second step, this gray scale image is subtracted from the
gray scale image of the previous frame which was also stored in the memory. The computed
difference image is given as input to the Threshold core (configured in Container 2 ) in the
same step, which enhances the difference if it is above a pre-defined threshold. The execution
of this schedule is shown in Figure 5.10.

Figure 5.10: Execution of Background Subtraction using partial reconfiguration

Section 6.2.2 presents the performance of this implementation against its software counterpart
executed on the Processing System.

5.3.3 Lane Detection

Lane detection, as explained in Section 3.2, can be implemented using partial reconfiguration
if hardware implementations of all the involved operations are available. However, Hough
Transform, the last step of the algorithm which detects the edges representing the lanes, could
not be synthesized successfully to fit into the designed reconfigurable containers. Attempts
to reduce the size of the core by reducing the size of images which can be processed were not
fruitful. Hence, the thesis implements only edge detection on the images. This implementation
can be extended to detect lanes on availability of IP cores of a suitable size for performing
the Hough Transform.
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The sequence of operation for the edge detection is as follows : Conversion to Gray Scale -
Noise filtering - Sobel Operator for edge detection - Thresholding - Morphological Opening.
This sequence returns edges of the input image and can be overlaid on the input image for
marking the edges. The overlaying process may be done in software resulting in a image
processing pipeline implemented partially in software and partially in hardware. The thesis
does not investigate this as software/hardware partitioning is out of the scope of this thesis.

Edge detection can be implemented with five IP cores, one for each processing step. This
image processing pipeline for edge detection can be implemented for processing three image
frames in parallel, like in Morphological Opening and Closing. We can call such a schedule
as One Frame per Container schedule. The execution of such a schedule is shown in Figure
5.11.

Figure 5.11: Execution of Edge Detection using the schedule — One Frame per Container

Edge detection can also be implemented with a schedule for minimising reconfigurations as
described in Table 5.5. The execution of this schedule is shown in Figure 5.12. This schedule
reduces the number of reconfigurations required, mainly because Container 3 is dedicated
for performing the Sobel operation. In this schedule, all the containers wont be executed in
parallel. The input image is channelled through all these IP cores in sequence. i.e. at a given
point of time only one container is processing the image, while the other containers are free.
We call this schedule as One Frame at a Time.

Container 1 Container 2 Container 3
Step 1 Convert To Gray Noise Filter Sobel
Step 2 Threshold Opening -

Table 5.5: Schedule for Edge Detection — One Frame at a Time

This schedule can provide better performance if the implementation deviates from the Al-
gorithm 3. Instead of performing reconfigurations only when the containers with incorrect
IP cores are detected (lines 6, 14 and 22 of Algorithm 3), the scheduler can anticipate the
upcoming reconfigurations and perform them when some other container is processing the
image. This allows the reconfiguration delay to be subsumed within the execution time of the
containers. The subsumption of the reconfiguration delay within the execution periods of the
container is shown in Figure 5.13.
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Figure 5.12: Execution of Edge Detection with the schedule — One Frame at a Time

Figure 5.13: Execution of Edge Detection under schedule — One Frame at a Time after op-
timisation

The performance of Edge Detection under all the described schedules is presented in Section
6.2.3.

Summary

Implementing image processing applications on Zynq-7000 platform requires the availability
of many image processing operators to be available as IP cores. Image processing opera-
tors can be generated as IP cores using the Vivado High Level Synthesis Tool and the HLS
Video Library. As a part of the thesis, IP cores for different image processing operations
were generated. These IP cores can be loaded in three reconfigurable containers, created for
implementing image processing applications. As the interfaces of the IP cores must match
the interfaces of the reconfigurable containers where it is loaded, a particular IP core can be
loaded only on a given set of containers. Software based schedules are responsible for loading
appropriate IP cores in the containers for implementing the image processing applications.
Different image processing applications can be implemented on this platform by modification
of this software based schedule. This thesis implemented Morphological Image Processing
applications along with applications like Edge Detection and Background Subtraction with
various schedules.
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This chapter presents the results of different evaluations performed on the implemented image
processing applications. The evaluation strategy was mainly aimed at measuring the resource
savings and the computational speed-up that can be achieved using partial reconfiguration.

6.1 Resource Consumption with Partial Reconfiguration

The Artix-7 reconfigurable fabric, which makes up the Programmable Logic of the used Zynq-
7000 device, mainly consists of Configurable Logic Blocks (CLBs), DSP Slices, FIFO slices
etc. This section summarises all the resources available in the Zynq-7000 device used in the
Zedboard and the usage statistics of the implemented applications.

Each CLB in the reconfigurable fabric of the Zynq-7000 device, XC7Z020-CLG484-1, consists
of two slices. Each CLB slice is made up of four 6-input look-up tables (LUTs), eight flip-flops,
multiplexers and arithmetic carry logic. One-third of the total slices, known as SliceM, can use
their LUTs as distributed RAM or as shift registers. The rest of the slices are known as SliceL.
The lookup tables from these slices are used for implementing combinational or sequential logic
of the design. The DSP blocks are needed for performing complex mathematical operations
while the RAM is used to store data. More information on the structure of slices and the
reconfigurable fabric is provided in [56]. The total available resources in the used Zynq-7000
device are given in Table 6.1.
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Availability Requirements
Resource Zedboard Dilation Erosion Opening Closing
Registers 106400 1529 1618 2647 2647
Look up tables 53200 1783 2097 3406 3406
SliceL 8950 241 288 484 484
SliceM 4350 206 237 368 368
DSP Slices 220 0 0 0 0
RAM - 18Kb Blocks 280 4 4 9 9

Table 6.1: Resources - Availability in Zedboard and Requirements for Morphological Image
Operations of Opening and Closing

6.1.1 Morphological Image Processing

Opening and Closing

The implementation of Morphological Image Operations — Opening and Closing — by re-
configuring the implemented containers with IP cores for Dilation and Erosion have been
elaborately described in Section 5.3.1. As compared to using a static IP core which performs
the entire operation, using partial reconfiguration provides resource savings as shown in Table
6.1.

Among the two IP cores, the Erosion core consumes more resources than the Dilation core.
Container sizes big enough for the Erosion core would also suffice for Dilation. The approx-
imate resource savings are summarised in Table 6.2. These figures are approximate as they
do not consider the overhead resources required for routing, as explained in Chapter 2.

Resources
With
Partial
Reconfiguration

Without
Partial
Reconfiguration

% Savings

Registers 1618 2647 38.43%
Look up tables 2097 3406 38.87%
SliceL 288 484 40.49%
SliceM 237 368 35.59%
DSP Slices 0 0 0
RAM - 18Kb Blocks 5 9 44.44%

Table 6.2: Resources Savings in Morphological Image Operations of Opening and Closing

Morphological Gradient

Morphological Gradient has been implemented with three image processing IP cores — Dila-
tion, Erosion and Image Subtraction — on the hardware design with three chained containers.
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The implementation of this application and the corresponding schedule is described in Section
5.3.1. With partial reconfiguration, the effective required FPGA resources is the sum of the
resources consumed by the Image Subtraction core and the bigger of the Dilation and the
Erosion core, i.e. res(Image Subtraction) + max (res(Dilation), res(Erosion)); where res()
is the resource consumption of the IP core. Resource savings are evaluated in this manner
because the FPGA resources are multiplexed only between the Dilation and the Erosion IP
cores.

The approximate resource savings in implementing the application of Morphological Image
Gradient is presented in Table 6.3. The resource savings for this application have not been as
substantial as for Opening and Closing.

Resources
With
Partial
Reconfiguration

Without
Partial
Reconfiguration

% Savings

Registers 3425 3590 4.59%
Look up tables 2483 2738 9.31%
SliceL 454 508 10.62%
SliceM 404 390 -3.58%
DSP Slices 0 0 0
RAM - 18Kb Blocks 5 9 44.44%

Table 6.3: Resources Savings in Morphological Image Gradient

The extent of resource savings on account of partial reconfiguration based design depends on
the application as well as the manner in which the application is decomposed into smaller
operations. Finer granularity of the operations potentially leads to more resource savings, as
the container size needs to be just big enough to accommodate the largest of the operations.

6.2 Processor Speedup with Partial Reconfiguration

As explained in the Chapter 5, the Processing System runs Xillinux, a Linux distribution, as
the operating system. The software program, responsible for scheduling the reconfiguration
process, executes in the user-space of the Linux environment. For evaluating the performance
of the image processing applications, the time between the start and the end of the image
processing is measured. This excludes the time required for acquiring the input images from
a video, a camera or any other source. The time required for displaying them in a GUI
window is also excluded. The time is measured by noting the timestamps using the function
clock()1 which provides an approximation of the current processor time in terms of clock cycles.
The processing time for an image frame is calculated by dividing the difference between the
timestamps at the start and at the end of the frame processing by the total number of processor
cycles in a second.

1Linux man pages - http://linux.die.net/man/3/clock
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It is important to note that this value is only approximate and influenced heavily by the
context switch times. In general the measured timings have been observed to deviate by
around 5 ms. To mitigate the effect of these deviations, all times have been measured as an
average of processing times of at least 150 frames. For measurement purposes the scheduler
is programmed to process 200 images of which the initial 50 images are not considered for
measurement. This gives time for any housekeeping processes spawned by Linux on account
of the scheduler program to settle down. The scheduler measures the processing times for the
next 150 image frames and reports the average processing time per frame.

6.2.1 Morphological Image Processing

Opening and Closing

In order to evaluate the processor speed-up for Opening and Closing, the performance of the
application is measured when executed with different levels of hardware usage. The different
implementations of the application are enumerated below :

• Case A : Complete software implementation using OpenCV executing on the Processing
System.

• Case B : Single hardware accelerator in the Programmable Logic for performing the
entire operation. The hardware accelerator is loaded in one of the reconfigurable con-
tainers. Hence, partial reconfiguration is not used.

• Case C : Use of hardware accelerators for Dilation and Erosion. The cores are loaded
into the containers based on a pre-determined schedule as explained in Section 5.3.1.
This use case is implemented using one, two and three reconfigurable containers, where
each container is responsible for processing one image frame.

• Case D : Loading Dilation core in one container and Erosion core in another. Chaining
the input frame through these containers to achieve the Opening and Closing operation.
No runtime partial reconfiguration is required in this case.

The performance of each of these implementations for executing different number of iterations
of Opening/Closing operations was measured. The process for iteratively performing Opening
and Closing operations on an input image is described in Section 5.3.1 of this thesis. The
results of the evaluation are summarized in Table 6.4.

The results suggest that the fastest implementation for performing Morphological Opening or
Closing is the one using a single hardware accelerator to perform the entire operation (Case
B). However, such an approach is inflexible as it cannot be used for performing the operation
iteratively on the input image. Also, Section 6.1.1 presented that such an approach consumes
more FPGA resources.

The speed-up comparison for the hardware implementations (Case C and Case D) are pre-
sented in the Figure 6.1. The static hardware in the figure refers to the Case D of this
application. It can be seen very clearly that hardware support provides significant speed-up
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Processing time required per frame in ms

Case A Case B Case C Case D

Iterations Software
Single
HW
Module

One
Container

Two
Containers

Three
Containers

Static
Hard-
ware

1 89.2 3.9 13.7 9 7.8 8.4
2 139.3 NA 22.2 13.1 11.2 15.9
3 171.7 NA 29.8 16.9 14.4 23.8
4 225.3 NA 38.2 20.6 16.5 31.7

Table 6.4: Performance of Morphological Image Operations - Opening and Closing

for this image processing application. Using just a single accelerator provides a speed-up
exceeding 5x. The irregularity in the trends of speed-up with increasing complexity of the
application could not be explained. It may be attributed to the experimental set-up where
measurement times are influenced by the processor load on account of background processes
and context switch times of Linux.

Figure 6.1: Speed-up Comparisons for Opening/Closing

The partial reconfiguration based approach using the reconfigurable containers (Case C) adds
to the overheads but is still significantly faster than the software implementation (Case A).
Using multiple containers for processing multiple images in parallel reduces processing time
per frame as shown in Table 6.4.

For implementing Opening or Closing using partial reconfiguration, each used reconfigurable
container is configured twice per processed image. This reconfiguration adds an additional
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overhead. This overhead can be observed by comparing the frame processing times of the
implementation which uses partial reconfiguration on one container in Case C with imple-
mentation using preloaded Dilation and Erosion IP cores in Case D, as shown in Figure 6.2.

Figure 6.2: Processing times for Opening/Closing with different implementations

Both the implementations differ only by the fact that the used reconfigurable container is re-
configured twice per processed image frame in Case C while no reconfigurations are performed
in Case D. As shown in Table 6.4, the processing times in Case D has a constant offset of
approximately 6ms with the times in Case C using one container. This constant offset is the
time lost in the two reconfigurations. This constant offset between the two cases is clearly
visible in Figure 6.2.

Morphological Image Gradient

For Morphological Image Gradient, the different implementations that are available are

• Software implementation using OpenCV executed by the Processing System,

• Single hardware accelerator in the Programmable Logic performing the entire operation,

• Partial reconfiguration based schedule using Erosion, Dilation and Image Subtraction
IP cores described in Section 5.3.1.

The performance of these implementations for computing Morphological Gradient iteratively
is evaluated. The evaluation results of these implementations are summarized in Table 6.5.

Similar to the evaluation results of Opening and Closing, here as well the implementation with
a dedicated hardware accelerator provides the best performance. But the implementation
cannot be used to iteratively perform this operation.
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Iterations Software
Single
Hardware
Module

Partial
Reconfiguration
based Hardware

1 106.6 4.1 25.4
2 149.3 NA 31.7
3 183.3 NA 44
4 232.8 NA 41.2

Table 6.5: Processing time per frame (in ms) for Morphological Image Gradient

The implementation using partial reconfiguration provides a significant speed-up as com-
pared to its software counterpart and is also flexible enough for performing the operation
iteratively.

As presented in Section 5.3.1, the number of reconfigurations performed per processed image
depends on the number of times the operation is performed. Table 5.3 shows that the number
of reconfigurations for performing this operation iteratively thrice is higher than performing it
four times. The impact can be seen in the processing times of the operation where performing
the operation thrice consumes more time as compared to performing it four times.

6.2.2 Background Subtraction

The evaluation of Background Subtraction was done by comparing only two implementations -
Software implementation using OpenCV and the partial reconfiguration based implementation
presented in the Section 5.3.2 of the thesis.

Background Subtraction
with Thresholding

Background Subtraction
without Thresholding

Software 13.6 11.9
Hardware with
Partial Reconfigurations 18.0 18.0

Table 6.6: Processing times (in ms) for Background Subtraction

This implementation seems to contradict the conclusions from the earlier evaluations that
partial reconfiguration based design speeds up computations. However the explanation for this
lies in the operations involved in Background Subtraction - Conversion to gray scale, image
subtraction and thresholding. The execution of these operations in software is only a little
slower than the corresponding applications in hardware, as shown in Appendix A.3. This is
mainly because all these image operations operate on a single pixel and not its neighbourhood.
Also the Background Subtraction is implemented using the implementation with chained
containers with the schedule presented in Table 5.4. The bypassing of the containers adds to
the overhead of entire operation and slows down the implementation.
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The schedule presented in Table 5.4 implements background subtraction with thresholding.
The thresholding is a distinct operation in the software and hence consumes some time as seen
in the results. However, if thresholding need not be performed in the hardware implementa-
tion, then the Bypass core must be loaded instead of the Threshold core. The time required
for execution of Bypass or Threshold IP core is almost the same, hence the execution times
are similar irrespective of whether thresholding is performed or not.

6.2.3 Edge Detection

As explained in Section 5.3.3, the Lane Detection application could not be implemented as the
IP core for performing the Hough Transform could not fit into any of the reconfigurable con-
tainers. Hence, the implemented application detects only edges and not lanes. The application
is evaluated by comparing the performance of its Open CV based software implementation
against the two implementations with partially reconfigurable schedules, One Frame per Con-
tainer (OFC) and One Frame at a time (OFT), as described in Section 5.3.3. The results of
the evaluation are summarised in Table 6.7.

Software OFC
1 container

OFC
2 containers

OFC
3 containers OFT

OFT
(opt)

Processing
time
per Frame
(in ms)

113.4 31.5 27.4 17.2 28.3 20.1

Table 6.7: Performance of Edge Detection

The performance of the three implementations are evaluated for detecting edges. As antici-
pated, the implementations using hardware provide tremendous speed ups.

Like in the case of Morphological Opening and Closing operations, here as well it can be seen
that processing time per frame reduces with an increase in the number of containers used for
processing the image frames in parallel.

As discussed in Section 5.3.3, the schedule One Frame at a time reduces the number of
reconfigurations from 5 in case of One Frame per container to 4 by dedicating a container for
performing a specific operation. The impact of the reduced number of configurations is visible
when the processing times for One Frame at a time and One Frame per Container using 1
container are compared. The processing time per frame using the schedule One Frame at a
time needs about 3ms lower than the other schedule. It gains this time purely on account of
the reduced number of reconfigurations.

Finally, it is possible to optimise the implementation using the schedule One Frame at a time
by deviating from the Algorithm 3. By trying to subsume the reconfiguration overhead within
the execution of the containers, as explained in Section 5.3.3, the processing time per frame
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can be reduced. The Table 6.7 presents the performance with this optimised implementation
of the schedule One Frame at a time under the heading OFT(opt).

6.3 Power Savings with Partial Reconfiguration

Chapter 2 presented power savings as one of the benefits of using partial reconfiguration
based design. Clearly, by being able to implement hardware designs on smaller FPGA ar-
chitectures and by unloading hardware modules during idle phases, power consumption can
be reduced. However, the reconfiguration process introduces some energy overheads which
cannot be simply neglected. The important question is if the energy overheads introduced
by partial reconfiguration is amortized by savings on account of it. This thesis used the Pro-
cessor Configuration Access Port (PCAP) for reconfiguration in a processor centric manner.
The measurement of the power consumption by the PCAP on account of partial reconfigu-
ration was hindered by the lack of power models for the used Zynq-7000 device. However, a
similar study on Xilinx Virtex-4 architectures showed a significant reduction in total energy
consumption after accounting for energy consumed for partial reconfiguration by an Internal
Configuration Access Port (ICAP) [57]. Hence, it would be reasonable to expect that the
energy consumed by the PCAP for partial reconfiguration would be lower than the energy
savings achieved.

The power consumption of the hardware accelerators (image processing IP cores) developed
as a part of this thesis is provided in Appendix A.4. Each of the accelerators consume on
an average 1mW. The software executing on the ARM core with its NEON co-processors and
the complex memory hierarchy consumes much more power. The average power consumption
of the ARM cores in question has been estimated in few unpublished sources2 to be around
500mW. While this statistic could not be verified, it sounds plausible.

With the hardware implementations which use partial reconfiguration, large fractions of the
ARM cores and its complex memory hierarchy are not required to improve performance. The
software scheduler executed on the ARM core only configures the DMA for bitstream and
image transactions along with polling to find the status of the transactions. The scheduler
does not benefit much from the memory hierarchy of the ARM core. Switching off the unused
portions of the ARM cores, like the L2 cache, would not penalise the scheduler in terms of
the performance. With this step, significant power savings can be expected. However, the
behaviour of the implementations with L2 cache of the ARM core switched off could not be
evaluated owing to difficulties in switching off the L2 cache which required modifications in
Linux kernel.

2Presentation slides from Department of Computer Science - University of Virginia:
http://www.cs.virginia.edu/~skadron/cs8535_s11/ARM_Cortex.pdf
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Summary

This chapter presented the results of the evaluations performed on the image processing ap-
plications implemented using partial reconfiguration. The evaluation strategy measured the
resource savings and the computational speed-up for the implemented applications. The
results showed that implementations using partial reconfiguration provides resource savings
compared to static hardware designs. The extent of resource savings depends on the gran-
ularity of the operations into which the application is broken down to. The evaluation also
proved that partial reconfiguration based designs on reconfigurable architectures with proces-
sor cores significantly speeds-up the computations executed on the processor. The speed-up
depends upon factors like number of reconfigurable containers used, the schedule of partial
reconfiguration and the type of computation itself. This chapter also discussed the possible
power savings on the Zynq-7000 platform by using partial reconfiguration.
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Conclusion and Future Work
Contents

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Conclusion

This thesis presented the usage of partial reconfiguration for implementing compute inten-
sive applications on reconfigurable architectures with a hard processor core. Most of the
implemented image processing applications showed significant speed-up with the hardware
accelerators implemented on the reconfigurable fabric compared to being executed completely
on the processor.

Further, this work experimentally established that FPGA resource consumption reduces by
time multiplexing the resources between different hardware modules using partial reconfigu-
ration compared to a static implementation. The extent of the resource savings depend on
the granularity of operations into which the application is decomposed. Finer granularity pro-
vides more resource savings. However, compared to a static implementation of an application,
its implementation using partial reconfiguration is slower owing to the delay introduced by
partial reconfiguration. The smaller the operations into which an application is decomposed,
the higher is the number of reconfigurations required for implementing the application, which
implies more overhead on account of partial reconfiguration. Based on the implementation,
the reconfiguration schedule can be optimised to subsume the reconfiguration delays to achieve
better performance. Thus, a design using partial reconfiguration involves trade-offs between
resource consumption and performance.

The use of partial reconfiguration for implementation of applications also provides additional
flexibility, for instance the implementation of morphological image operations in Chapter 5
was usable for performing the operations iteratively with minor changes to the reconfiguration
schedule based in software. This is not possible in case of static hardware implementations.

To conclude, implementing applications by using partial reconfiguration provide many benefits
at the cost of meagre performance penalty compared to the static hardware implementations.
With optimised scheduling, it is even possible to amortise the performance penalty to a certain
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extent. This design paradigm makes possible to implement certain applications which would
have been otherwise difficult or even impossible.

7.2 Future Work

One of the intentions of this work was to be reusable for the OTERA1 project for validating
the developed pre-configuration and post configuration tests [14]. The synthesized hardware
accelerators for the applications implemented with partial reconfiguration can be extended
with the test wrappers developed for the reconfigurable fabric [15]. This way periodic online
testing of the reconfigurable fabric and a configured hardware accelerator is possible.

Further, the current implementation does not use interrupts to avoid modifying the Linux
kernel. The future extensions for this thesis can integrate interrupt handling mechanisms with
customised interrupt handlers for the image processing applications. This way the processor
need not poll on the reconfigurable containers to determine if they have finished processing the
image and if the reconfiguration process is complete. After initiating the image operations
and the required reconfigurations, the processor can switch to low power sleep modes or
perform other software tasks. Interrupts can intimate the processor about the completion of
the reconfiguration and the image operations. This could further reduce the energy required
per frame during image processing.

More complex image processing pipelines can also be implemented using the designs developed
as a part of this thesis. For this purpose, other Intellectual Property (IP) cores for image
operations can be generated using high level synthesis.

1Refer Chapter 1 for details on the project
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Appendix A

Image Processing Cores
A.1 Generation of Image Processing Cores

Image Processing Cores have been generated using the Vivado High Level Synthesis (HLS)
tool and the integrated HLS Video Library which provides synthesizable version of OpenCV
primitives. Vivado HLS tool is a high level synthesis tool used for generating Register Transfer
Level (RTL) descriptions of programs written in C/C++. Generally C/C++ programs follow
sequential behaviour while the corresponding hardware is generally concurrent. In order to
generate hardware description of a program, this tool converts the sequential behaviour of the
program into parallel behaviour of hardware.

For this purpose the tool must be informed about the possibilities of parallelism, pipelining
etc. in the program. All the information is provided to the tool in the form of compiler
directives. To begin with the synthesis, the project setting of the tool is updated with the
name of the top-level C/C++ function to be synthesized and the desired clock speed with
which the synthesized modules are to be used. This function is synthesized as a hardware
module with all the function arguments as ports. The tool may add additional ports for the
interface and output signals, especially if the function returns any value. The program being
synthesized can use compiler directives to advise the tool to wrap the ports into bus interfaces.
Vivado HLS supports AXI4-Lite Slave, AXI4-Master and AXI4-Streams for this purpose.

This thesis generates image processing IP cores wrapped in different AXI4 bus interfaces with
constraints of being clocked with 100 MHz.

A.2 Resource Usage of Image Processing Cores

This Table A.1 shows the resource usage of all the image processing cores generated from the
Vivado High Level Synthesis tool and the HLS Video Library. The reconfigurable resources
available in the Zynq-7000 device used in this thesis are described in Chapter 6.

The entry with containers presents the maximum resources available within the reconfigurable
container to accommodate the image processing IP cores. All the resource consumption shown
in the table are pre-placement estimations. The design flow recommends using reconfigurable
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Resource Consumption for 640 x 480 image processing
Registers Flip-Flops SliceL SliceM DSP RAM(18Kb)

Containers 4800 9600 700 500 40 20
Loopback 1010 586 131 122 0 0
Loopback 2 1177 698 148 147 0 0
Sobel 2872 1731 408 311 0 5
Dilation 1783 1529 241 206 0 5
Erosion 2097 1618 288 237 0 5
Threshold 2035 1060 267 242 0 0
Convert to Gray 1155 673 147 142 3 0
Opening 3406 2647 484 368 0 9
Closing 3406 2647 484 368 0 9
Noise Filter 5028 2978 734 523 21 8
Morp. Gradient 3590 2738 508 390 0 9
Image Subtract 1328 865 166 167 0 0

Table A.1: Resource consumption of all generated IP cores

modules smaller than the reconfigurable containers. However, the constraints are not strin-
gent as seen in case of Noise Filter. Despite having estimations indicating over-usage of
registers, the tool chain could successfully place and route it in all the suitable reconfigurable
containers.

Bitstream sizes in KB
Container 1 Container 2 Container 3

Bitstream w/o compression 317.4 317.4 317.4
Loopback 211.1 213.3 202.3
Sobel 218.5 222.9 219.3
Convert To Gray 204.6 217.4 206.7
Erosion 218.7 218.5 219.3
Dilation 222.9 218.5 219.3
Opening 222.9 222.9 223.3
Closing 222.9 223.2 223.2
Threshold 214.4 214.2 215.1
Morphological Gradient 222.9 222.9 223.3
Noise Filter 231.2 231.1 231.1

Table A.2: Size of Partial Bitstreams

The Table A.2 shows the size of all the generated partial bitstreams for the design using in-
dependent containers. The uncompressed size of all partial bitstreams meant for a particular
reconfigurable container is always same. However their size can be reduced by compression
and the compressed size can be treated as an indication of resource usage. For generating com-
pressed bitstreams, the bit generator invoked from the PlanAhead tool must set appropriate
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options.

As seen from Table A.1, Loopback IP core had the least resource consumption while Noise
Filter had the highest. This is apparent from the size of their partial bitstreams as well.

A.3 Performance of Image Processing Cores

The Table A.3 compares the performance of image processing operations in software and
using the IP cores generated using the Vivado tool flow. It is important to note that the
timings for the execution of image processing operations using the IP core can only be taken
as an indication due to the inaccuracies observed in the measurement on account of context
switching as explained in Chapter 6.

Processing time (in ms) for 640 x 480 image
Software (OpenCV) Hardware (IP Cores)

Loopback 0 3.7
Erosion 45.1 3.25
Dilation 45.3 3.4
Opening 90.3 3.45
Closing 90.6 3.35
Convert to Gray 8.2 4
Threshold 2.55 3.6
Sobel 132.8 4.1
Noise Filter 45.4 3.55
Morp. Gradient 104.6 3.4
Image Subtraction 4.3 4.2

Table A.3: Performance of Image Processing Cores

As shown in the Table A.3, the hardware execution gives faster results as compared to the
software implementations for compute intensive image processing operations. For simpler
operations like subtraction and thresholding, the performance of hardware is comparable
with software.

A.4 Power Consumption of Image Processing Core

The power consumption of the generated image processing IP cores is presented in the Table
A.4. The table shows static and dynamic power consumption for each of the generated IP core.
The power consumption is measured by the use of the Xilinx XPower Analyzer tool. This
tool takes as input the implemented design and provides an estimate of static and dynamic
power consumption for the hierarchical design using the provided test bench. In absence of a
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test bench, the tool assumes switching probabilities for all signals in the design for estimating
the power.

Power Consumption of Image Processing IP cores
Total Power Static Power Dynamic Power

Loopback 0.35 0.12 0.23
Sobel 0.45 0.16 0.29
Convert to Gray 0.39 0.14 0.25
Erosion 1.23 0.92 0.31
Dilation 1.24 0.95 0.29
Opening 0.99 0.6 0.39
Closing 0.99 0.6 0.39
Threshold 0.7 0.2 0.5
Morphological Threshold 2.23 1.76 0.47
Noise Filter 0.53 0.2 0.33

Table A.4: Power Consumption of the Image Processing IP Cores (in mW)

The power consumptions for each of the generated IP cores have been measured without
developing specific test benches. The tool hence estimated the power consumption based on
the default probabilities and hence the figures may not be very accurate.
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