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ABSTRACT

The application of recent advances in computing, cognitive and networking technologies
in manufacturing has triggered the so-called fourth industrial revolution, also referred
to as Industry 4.0. Smart and �exible manufacturing systems are being conceived as a
part of the Industry 4.0 initiative to meet the challenging requirements of the modern
day manufacturers, e.g., production batch sizes of one. The information and commu-
nication technologies (ICT) infrastructure in such smart factories is expected to host
heterogeneous applications ranging from the time-sensitive cyber-physical systems reg-
ulating physical processes in the manufacturing shop�oor to the soft real-time analytics
applications predicting anomalies in the assembly line. Given the diverse demands of
the applications, a single converged network providing di�erent levels of communication
guarantees to the applications based on their requirements is desired.

Ethernet, on account of its ubiquity and its steadily growing performance along with
shrinking costs, has emerged as a popular choice as a converged network. However,
Ethernet networks, primarily designed for best-e�ort communication services, cannot
provide strict guarantees like bounded end-to-end latency and jitter for real-time tra�c
without additional enhancements. Two major standardization bodies, viz., the IEEE
Time-sensitive Networking (TSN) Task Group (TG) and the IETF Deterministic Net-
working (DetNets) Working Group are striving towards equipping Ethernet networks
with mechanisms that would enable it to support di�erent classes of real-time tra�c.
In this thesis, we focus on handling the time-triggered tra�c (primarily periodic in
nature) stemming from the hard real-time cyber-physical systems embedded in the
manufacturing shop�oor over Ethernet networks. The basic approach for this is to
schedule the transmissions of the time-triggered data streams appropriately through
the network and ensure that the allocated schedules are adhered with. This approach
leverages the possibility to precisely synchronize the clocks of the network participants,
i.e., end systems and switches, using time synchronization protocols like the IEEE 1588
Precision Time Protocol (PTP). Based on the capabilities of the network participants,
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Abstract

the responsibility of enforcing these schedules can be distributed. An important point
to note is that the network utilization with respect to the time-triggered data streams
depends on the computed schedules. Furthermore, the routing of the time-triggered
data streams also in�uences the computed transmission schedules, and thus, a�ects the
network utilization. The question however remains as to how to compute transmission
schedules for time-triggered data streams along with their routes so that an optimal
network utilization can be achieved.

We explore, in this thesis, the scheduling and routing problems with respect to the time-
triggered data streams in Ethernet networks. The recently published IEEE 802.1Qbv
standard from the TSN-TG provides programmable gating mechanisms for the switches
enabling them to schedule transmissions. Meanwhile, the extensions speci�ed in the
IEEE 802.1Qca standard or the primitives provided by OpenFlow, the popular south-
bound software-de�ned networking (SDN) protocol, can be used for gaining an explicit
control over the routing of the data streams. Using these mechanisms, the responsibil-
ity of enforcing transmission schedules can be taken over by the end systems as well as
the switches in the network. Alternatively, the scheduling can be enforced only by the
end systems or only by the switches. Furthermore, routing alone can also be used to
isolate time-triggered data streams, and thus, bound the latency and jitter experienced
by the data streams in absence of synchronized clocks in the network.

For each of the aforementioned cases, we formulate the scheduling and routing problem
using Integer Linear Programming (ILP) for static as well as dynamic scenarios. The
static scenario deals with the computation of schedules and routes for time-triggered
data streams with a priori knowledge of their speci�cations. Here, we focus on com-
puting schedules and routes that are optimal with respect to the network utilization.
Given that the scheduling problems in the static setting have a high time-complexity,
we also present e�cient heuristics to approximate the optimal solution. With the
dynamic scheduling problem, we address the modi�cations to the computed transmis-
sion schedules for adding further or removing already scheduled time-triggered data
streams. Here, the focus lies on reducing the runtime of the scheduling and routing
algorithms, and thus, have lower set-up times for adding new data streams into the
network.
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DEUTSCHE ZUSAMMENFASSUNG

Die Anwendung jüngster Fortschritte der Rechner- und Netzwerktechnologien in der
Fertigung hat die sogenannte vierte industrielle Revolution eingeläutet, die auch als
Industrie 4.0 bezeichnet wird. Im Rahmen dieser Initiative werden derzeit intelli-
gente und �exible Fertigungssysteme erdacht, die den anspruchsvollen Anforderungen
heutiger Fertigungsunternehmen gerecht werden sollen, wie beispielsweise der Produk-
tion von Chargen der Gröÿe eins. Die Informations- und Kommunikationsinfrastruk-
tur (engl. information and communication technologies, ICT) in solchen intelligenten
Fabriken muss dafür heterogene Anwendungen unterstützen, die von echtzeitkritis-
chen cyber-physikalischen Systemen für die Maschinenregelung in der Fertigung bis zu
Datenanalyseanwendungen mit weichen Echtzeitanforderungen wie z.B. für die Erken-
nung von Anomalien im Produktionsprozess reichen. Angesichts der verschiedenen
Anforderungen dieser Anwendungen ist ein einheitliches Netzwerk wünschenswert, das
den Anwendungen unterschiedliche Grade an Kommunikationsgarantien entsprechend
ihres Bedarfs liefert.

Ethernet hat sich aufgrund seiner weiten Verbreitung, stetig steigenden Performance
und sinkenden Kosten als Technologie der Wahl für vereinheitlichte Netzwerke her-
vorgetan. Allerdings können Ethernet-Netzwerke, die in erster Linie für Best-
E�ort-Kommunikationsdienste entwickelt wurden, zunächst nicht ohne weiteres harte
Garantien wie Begrenzungen der Ende-zu-Ende-Latenz und des Jitter für Echtzeitkom-
munikation bieten. Jedoch arbeiten bereits zwei bedeutende Standardisierungsgrup-
pen an entsprechenden Erweiterungen für Ethernet, welche Mechanismen zur Unter-
stützung unterschiedlicher Klassen von Echtzeitverkehr vorsehen, nämlich die IEEE
Time-sensitive Networking (TSN) Task Group (TG) sowie die IETF Deterministic
Networking Working Group. In dieser Dissertation konzentrieren wir uns auf den
� vorwiegend periodischen � zeitgesteuerten (engl. time-triggered) Datenverkehr in
Ethernet-Netzwerken, der beispielsweise von den cyber-physischen Echtzeitsystemen in
der Fertigung erzeugt wird. Der grundlegende Ansatz hierzu umfasst die Berechnung
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Deutsche Zusammenfassung

eines geeigneten Übertragungszeitplans, oder Schedules, für zeitgesteuerte Datenströme
durch das Netzwerk und Mechanismen zur Gewährleistung, dass dieser vorde�nierte
Plan eingehalten wird. Unser Ansatz macht von der Möglichkeit Gebrauch, die Uhren
aller Kommunikationsteilnehmer, also der Endsysteme und Switches, mithilfe von Pro-
tokollen wie dem IEEE 1588 Precision Time Protocol (PTP) präzise zu synchro-
nisieren. Die Zuständigkeit für die Einhaltung des Schedules kann auf die Kommu-
nikationsteilnehmer entsprechend ihrer Fähigkeiten verteilt werden. Hierbei ist es
wichtig anzumerken, dass die Netzauslastung bezüglich der zeitgesteuerten Daten-
ströme wesentlich vom Scheduling abhängt. Darüber hinaus hat das Routing des
zeitgesteuerten Verkehrs einen Ein�uss auf die möglichen Schedules, und wirkt sich
daher ebenfalls auf die erreichbare Netzauslastung aus. Dadurch ergibt sich die Frage,
wie die Schedules für zeitgesteuerte Datenströme zusammen mit deren Routen derart
berechnet werden können, dass eine optimale Netzauslastung erzielt wird.

In dieser Dissertation untersuchen wir Scheduling- und Routingprobleme für zeit-
gesteuerte Datenströme in Ethernet-Netzwerken. Der kürzlich verö�entlichte IEEE-
Standard 802.1Qbv der TSN-TG stellt programmierbare Gating-Mechanismen zur
Verfügung, die Ethernet-Switches eine zeitlich geplante Paketübertragung erlauben.
Gleichermaÿen können die im IEEE-Standard 802.1Qca spezi�zierten Erweiterungen
oder auch die Primitiven des weit verbreiteten software-de�ned networking (SDN)
Protokolls OpenFlow dazu verwendet werden, explizit die Kontrolle über das Rout-
ing von Datenströmen zu übernehmen. Unter Verwendung dieser Mechanismen kann
die Zuständigkeit für die Durchsetzung von Übertragungs-Schedules von Endsystemen
sowie Switches im Netzwerk übernommen werden. Alternativ kann das Scheduling
auch rein durch Endsysteme oder rein durch Switches vollzogen werden. Auÿerdem
kann schon allein durch das Routing eine Isolation von zeitgesteuerten Datenströmen
erreicht werden, und dadurch eine Beschränkung der Latenz und des Jitters dieser
Datenströme, selbst ohne den Einsatz präzise synchronisierter Uhren im Netzwerk.

Für jeden der zuvor genannten Fälle formulieren wir das Scheduling- und Routing-
problem als ganzzahliges lineares Optimierungsproblem (engl. integer linear program,
ILP) für statische sowie dynamische Szenarien. Das statische Szenario umfasst die
Berechnung von Schedules und Routen für eine Menge zeitgesteuerter Datenströme,
deren Spezi�kationen a priori bekannt sind. In diesem Fall konzentrieren wir uns auf
die Berechnung von Schedules und Routen welche zu einer optimalen Netzauslastung
führen. Da die entwickelten Algorithmen zur Lösung des statischen Schedulingprob-
lems durch eine hohe Zeitkomplexität gekennzeichnet sind, stellen wir auÿerdem ef-
�ziente Heuristiken zur Approximation der optimalen Lösung vor. Beim dynamischen
Schedulingproblem befassen wir uns hingegen mit der Modi�kation bereits berechneter
Schedules beim Hinzufügen neuer oder beim Entfernen bestehender zeitgesteuerter
Datenströme. Dabei wird eine Laufzeitreduktion der Scheduling- und Routingalgorith-
men angestrebt, und damit eine Verkürzung des Verbindungsaufbaus für neu hinzuk-
ommende Datenströme.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The deployment of cyber-physical systems and automation technologies to implement
production processes in a shop�oor has revolutionized manufacturing. These systems
enable control of production processes by means of sensors and actuators embedded in
the manufacturing shop�oor and networked over an information and communication
technologies (ICT) infrastructure. Notably, they have triggered a paradigm shift from
mass production to production of highly customized products. For instance, Daimler,
a leading automotive manufacturer, o�ers today around 1021 and 1024 variants of its
Mercedes C-Class and E-Class models, respectively [1]. These technologies have also
facilitated manufacturers to o�er a wider range of products in their portfolio leading
to a subsequent decrease in the duration of their product life-cycles. An example from
the automotive industry is the reduction of the average duration of product life-cycles
of street cars from 10.6 years in the 1970s to 5.6 years in the early 2000s [2]. Given
that modern day manufacturers are striving to achieve a production batch size of one
along with rolling product releases, these trends are only expected to rise sharply in the
coming years. New manufacturing systems are being conceptualized in order to achieve
these goals at costs not signi�cantly higher than that of mass production [3] [4].

The advent of Internet of Things (IoT) has led to the networking of sensing, actuating,
and computing elements in the manufacturing shop�oor over the internet, bringing in
key enabling technologies like Machine Learning, Arti�cial Intelligence, Data Analytics,
etc., into the shop�oor [5] [6] [7]. Thanks to these technologies, we are standing on the
cusp of the so-called fourth industrial revolution, also labelled as Industry 4.0 in pop-
ular literature [8]. Industry 4.0 envisions intelligent manufacturing environments with
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self-adaptive machines which recon�gure themselves to e�ciently meet volatile produc-
tion goals stemming from changing market demands, regulations, rapid innovations,
etc., [9].

The ICT infrastructures in such a �smart factory�, usually consisting of computing,
storage, and network resources, are expected to host a number of heterogeneous ap-
plications, each demanding di�erent levels of service guarantees from the underlying
infrastructure. On the one hand are extremely time-sensitive cyber-physical systems
where network delay (including the delay from packet losses) and jitter impacts the
quality of control of cyber-physical systems. An example for such a system are the
machines in an automotive shop�oor which can potentially fail when two consecutive
packets are lost [10]. In extreme cases these failures could lead to a severe damage to
the machines or can even be fatal. Another example of such time-sensitive systems
are the isochronous motion control appliances in industrial automation which demand
bounded jitter to the order of microseconds for stability [11]. On the other hand are soft
real-time applications, for instance, an industrial analytics application using machine
learning techniques for optimizing production output [12], or complex event processing
(CEP) applications detecting anomalies in the production line [7] [13].

Providing required quality of service (QoS) to the heterogeneous applications execut-
ing in the ICT infrastructure is typically easier, if dedicated resources are allocated for
di�erent kind of applications, e.g., deployment of dedicated machines with real-time
operating systems and highly engineered �eld-bus networks providing computing and
communication capabilities respectively for the time-sensitive cyber-physical systems
hosted in the infrastructure. The modern automation pyramid which classi�es the in-
frastructure resources into several levels ranging from �eld level to enterprise level based
on their functionalities and capabilities is a classical example of such dedicated resource
provisioning. However, the aspect of recon�gurability in smart factories cannot be lim-
ited to the mechanical components alone and must also cover its ICT infrastructure
which ultimately hosts the applications executing on top. Hence, dedicated resource
provisioning schemes would not be suitable for deployment in smart factories. A con-
verged ICT infrastructure which provisions resources to the applications based on their
requirements is needed to handle such heterogeneity.

To achieve converged ICT infrastructures targeted at manufacturing scenarios, we pro-
pose a software-de�ned approach inspired from the basic principles of software-de�ned
networking (SDN). These principles can be further applied to the compute and stor-
age domains of the infrastructure to create a software-de�ned manufacturing environ-
ment.

1.1.1 Software-de�ned Manufacturing Environment

The paradigm of software-de�ned networking primarily aims to increase the �exibility
of networking with two basic operating principles [14]. Firstly, it clearly separates the
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Figure 1.1: Software-de�ned Manufacturing Environment

basic network functionality of forwarding (network data plane) from network con�gura-
tion and management (network control plane). The network data plane is implemented
�in hardware� by network switches, while the network control plane is outsourced to
standard hosts, i.e., SDN controller(s), implementing the logic to con�gure the net-
work, e.g., by populating the forwarding tables of switches. Secondly, SDN enables
a logically centralized control plane which has a global view onto the underlying net-
work infrastructure simplifying the implementation of control logic signi�cantly. For
instance, SDN enables deployment of centralized routing algorithms with a global view
on the network topology, tra�c statistics, etc., to improve network utilization instead of
implementing a distributed routing algorithm [15]. The logical centralization here does
not imply that the control plane is also physically centralized. Usually, it is distributed
to several hosts to increase availability, performance, and fault tolerance. With SDN,
the network can be shaped, if required dynamically, to meet the requirements of the
applications executing in the infrastructure with respect to communication.

These principles can be translated from the networking domain to compute and storage
domains by mainly separating their core functionality from their management and con-
�guration. For instance, the computational processes executed by virtual machines can
be seen as a typical task of the data plane, while the management of virtual machines
(creation, migration, placement, termination, etc.) would be handled by the control
plane. Figure 1.1 shows the architecture of such a software-de�ned manufacturing
environment.

Architecturally, the software-de�ned manufacturing environment consists of three lay-
ers, viz., the data plane, the control plane, and the application plane. The data plane
in a software-de�ned manufacturing environment (SDME) consists not only of the stor-
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age nodes, the compute nodes, and the network switches, but also of the sensors and
the actuators embedded in the manufacturing shop�oor. The control plane is hosted
on physically distributed controllers but maintains a logically centralized view on the
data plane, while the applications executing in the infrastructure are on the application
plane. The control plane communicates with the data plane and the application plane
using what are known as the southbound and the northbound interfaces, respectively.
The control plane gathers applications requirements using northbound interfaces and
provisions the infrastructure resources to the applications based on its holistic view of
the data plane and the application requirements. The data plane is then con�gured
by the control plane using the southbound interfaces to enforce the provisioning of
resources. For instance, if new sensors and actuators are plugged-in into the infras-
tructure for creating a new cyber-physical system, the control plane allocates required
computational resources for the cyber-physical systems controller (di�erent from the
controllers hosting the control plane of the infrastructure) and con�gures the network
to connect the respective computing node with the sensors and the actuators while
ensuring that the latency and jitter requirements of the cyber-physical systems are
satis�ed.

Although this concept in general improves �exibility, it is still an open question on how
to provide desired QoS guarantees to the applications, i.e., how exactly to con�gure the
data plane for satisfying the real-time requirements of all the applications while exploit-
ing the global view of the infrastructure available with the software-de�ned approach.
In this thesis, we focus on the networking domain of the software-de�ned manufac-
turing environment and explore the various challenges in con�guring the underlying
communication network in a software-de�ned manufacturing environment based on the
applications executing in the infrastructure. We exploit the latest developments in the
networking technologies�Software-de�ned Networking and Time-sensitive Network-
ing [16]�for managing and controlling complex networks foreseen in smart factories.
Overall, we seek to develop a �Time-sensitive Software-de�ned Network�, a network ar-
chitecture along with required algorithms, that automatically con�gures itself based on
the capabilities of the data plane elements of the underlying network and the require-
ments of the hosted applications. Such an architecture can become one cornerstone for
a software-de�ned manufacturing environment and can be complemented by additional
concepts for the compute and the storage domains in the future.

1.1.2 The Time-sensitive Networking Initiative

As already mentioned, the cyber-physical systems deployed in manufacturing shop�oors
are hard real-time systems demanding guarantees like upper bounds on the network
latency and latency variance (also referred to as jitter). For instance, computerised
numerical control (CNC) machines used in production processes like milling, sawing,
drilling etc., demand network latencies to the order of 250µs�1ms with jitter lim-
ited to a few microseconds [17]. Traditionally, highly engineered �eld-bus systems
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have been used to provide these stringent communication guarantees for such time-
sensitive systems [18] [19]. State-of-the-art �eld-bus technologies like SERCOS-III [20],
Pro�NET [21], etc., developed over Ethernet, can handle up to three di�erent classes of
real-time tra�c along with non-real-time tra�c over the same medium [11]. However,
being incompatible with each other, di�erent �eld-bus technologies cannot be operated
on the same physical medium without losing real-time properties. This hinders the
goal of realising a single converged network as required by the smart factories instead
of the multitude of networks classi�ed into multiple levels in the current model of the
automation pyramid.

The proliferation of the IEEE 802.3, i.e., Ethernet, and IP networks, and its steadily
growing performance along with shrinking costs has led to the emergence of these net-
working technologies as a natural choice for industrial automation as well. However,
these technologies, initially designed for providing best-e�ort communication services,
cannot provide required real-time guarantees for time-sensitive tra�c like the time-
triggered data streams (primarily periodic in nature) stemming from manufacturing
systems like the CNC machines in a shop�oor [22]. Realizing the need for equipping
these networking technologies to also handle real-time tra�c in addition to best-e�ort
tra�c, two major standardization bodies�the IEEE and the IETF�have set out to
standardize extensions enabling the usage of Ethernet as a converged network. The
IEEE Time-sensitive Networking (TSN) Task Group (TG) [16] is developing stan-
dards for time-synchronized low latency streaming services for Ethernet networks, while
the IETF Deterministic Networking (DetNets) Working Group [23] is targeting time-
sensitive communication over Layer 3 routed networks. Both these groups consider a
separation of concerns and logical centralization of control logic, like in Software-de�ned
Networking, a promising option [24] [25].

The TSN-TG has already published several extensions to the IEEE 802.1 standard and,
at the time of writing this thesis, was actively working on several others. Prominent
among the recently published standards are the ones which standardize hardware ex-
tensions in Ethernet switches to handle scheduled tra�c, i.e., the time-triggered data
streams. The IEEE 802.1Qbv [26] speci�es a programmable gating mechanism which
regulates the connection of the queues of an egress port with the physical medium of the
port and can be used for scheduling transmissions of data streams at the egress ports
of a switch. The IEEE 802.1Qca [27] provides mechanisms for explicit control over the
forwarding of tra�c, if required over non-shortest paths. Furthermore, the availability
of frame pre-emption mechanisms enable high priority tra�c to commence by inter-
rupting transmissions of low priority tra�c. The availability of these capabilities in
the data plane elements opens up additional possibilities with respect to con�guration
of the network to handle time-triggered data streams. However, these standards stop
short of specifying concrete methods to compute schedules or routes for time-triggered
tra�c, providing network operators the complete freedom to choose/develop their own
approaches to these scheduling and routing problems.
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For optimal utilization of the network by the applications relying on time-triggered
communication, there is a need of algorithms for computing good schedules and routes
for time-triggered data streams. In this thesis, we formulate and solve the problem
of scheduling and routing of time-triggered data streams based on the availability of
these aforementioned IEEE extensions in Ethernet networks.

1.2 Scheduling & Routing of Time-triggered Tra�c

in Ethernet

Network delay in Switched-Ethernet networks comprises propagation delay, processing
delay, transmission delay, and queuing delay. Propagation delay in a local area network
with prede�ned diameter is bounded by physics, thus, deterministic and very small
(order of nanoseconds). The processing delays in commodity switches are in the order
of microseconds or lower and have been shown to be almost constant for a given set
of matching �elds [28]. The transmission delay depends on the bit-rate of the link
and is bounded and deterministic for constant bit-rate tra�c. Thus, the bounding
of queuing delays, which is often non-deterministic and could be unbounded, is the
key to achieving deterministic and bounded network delays and jitter for real-time
tra�c. Furthermore, bounding of queuing delays eliminate packet losses occurring due
to over�owing queues, provided that the bounds are low enough.

The basic approach to bound queuing delays targeting time-sensitive periodic commu-
nication, e.g., a constant bit-rate sensor data stream, in local area networks (LAN) is to
schedule the transmission of the packets through the network. Naturally, these sched-
ules must be e�ectively enforced by ensuring that the scheduled data streams (also
referred to as time-triggered data streams) are isolated either temporally or spatially
from each other and from other interfering tra�c in the network. This idea leverages
the possibility to precisely synchronize the clocks of the network participants, i.e., the
end systems (hosts) and the network elements (switches) using time synchronization
protocols like the IEEE 1588 Precision Time Protocol (PTP) or the IEEE 802.1AS
(Standard for Timing and Synchronization for Time-Sensitive Applications in Bridged
Local Area Networks) [29].

Based on the capabilities of the network participants, the scheduling can be enforced in
di�erent parts of the network [30]. The hosts require synchronized clocks for enforcing
the schedules for time-triggered tra�c, while the switches additionally need primitives
like the enhancements speci�ed in the IEEE 802.1Qbv standard for handling scheduled
tra�c in Ethernet. The scheduling may thus be implemented only on the switches,
only on the hosts, or on the switches as well as the hosts. Enforcing scheduling in
an increased number of participants, ideally on the switches as well as on the hosts,
yields higher network utilization with respect to the scheduled tra�c while providing
tighter bounds on the end-to-end latencies and jitter experienced by the packets of

6



1.2 Scheduling & Routing of Time-triggered Tra�c in Ethernet

Figure 1.2: Solution space for handling time-triggered data streams in Ethernet

the corresponding data streams. However, this also incurs additional costs on account
of the specialized hardware features required to be implemented in the switches. In
networks where these enhancements are not available in the switches, the scheduling
can be enforced only on the hosts.

One of the main prerequisites for computing transmission schedules for time-triggered
data streams is the knowledge of the paths over which the streams are routed. However,
the routes of the streams also a�ect the computed schedules. In the worst case, the
paths over which the data streams are routed may not yield any feasible solution. Thus,
the routing of time-triggered data streams is as important as its scheduling. Ideally,
it would be preferable to compute the schedules and the routes of the time-triggered
data streams jointly in a bid to compute solutions optimal with respect to the network
utilization. However, as we will see in the later chapters, this is not always possible
given the high time-complexities of both these problems.

We classify the solution space for handling of time-triggered data streams in Ether-
net into four cases based on the capabilities of the hosts and switches, as shown in
the Figure 1.2. First, we consider the networks in which the end systems as well as
switches are synchronized and the switches are equipped with enhancements to enforce
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transmission schedules for the time-triggered tra�c. Here, transmission scheduling can
be enforced at every hop resulting in tight bounds on the end-to-end latencies and
the jitter experienced by the time-triggered data streams. The need for specialized
switches, however, drives up the incurred costs. For the second case, we relax the re-
quirement for synchronized clocks on the end systems. Such end systems could be low
cost sensors which are not equipped with network interfaces capable of time-stamping
incoming data packets, an essential requirement for precise clock synchronization. With
unsynchronized clocks on the end systems, the transmissions can be scheduled only on
the switches. Naturally, the o�ered bounds on the latency and jitter are also slightly
relaxed.

Next, we consider the networks where only end systems are capable of scheduling
transmissions while the switches are used only for forwarding. Such situations can be
foreseen, for instance, during the incremental introduction of switches with additional
enhancements for handling scheduled data streams in a live network. Such scenarios
could also arise for networks in infrastructures where the quantum of scheduled tra�c
to be supported is too small a percentage of the total tra�c to justify the additional
costs incurred for specialized switches.

Finally, we also consider networks in which neither are any network participants syn-
chronized nor are the switches equipped with extensions to schedule transmissions.
Here, scheduling as an approach to provide communication guarantees is not an op-
tion. The only possibility here is to route the data streams for spatially isolating them
in order to bound the queuing delays they incur.

1.2.1 Challenges

While there exists di�erent possibilities to enforce transmission schedules for time-
triggered tra�c, developing suitable scheduling and routing algorithms for the purpose
is rather challenging.

Constrained Optimization Problems

The scheduling problems in each of the aforementioned scenario are, in fact, constrained
optimization problems and cannot be solved trivially. The transmission schedules for
time-triggered tra�c must be so constructed that they ful�l their respective end-to-end
latency constraints and respect the network limitations/properties, e.g., FIFO ordering
in the queues of the switches, while maximizing the amount of time-triggered tra�c that
can be accommodated in the network. Moreover, we seek to minimize the cumulative
queuing delays incurred by the time-triggered tra�c, and hence, base our solutions on
the �no-wait� principle, i.e., we strive to schedule transmissions of packets no later than
they arrive at a particular node.
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Overall, the resulting scheduling problems have a high time complexity, with most of
them being NP-hard, thus requiring e�cient heuristics for practical usage.

Modelling Hardware Capabilities

In this thesis, we rely on the usage of the programmable gating mechanisms speci�ed
in the IEEE 802.1Qbv (cf. Section 2.2.1) for enforcing the schedules on the switches.
Thus, we are required to compute the transmission schedules in the form of gating
programs for each of the ports of the switches in the network.

For networks in which scheduling is enforced on the end systems only while the switches
merely perform the forwarding of packets, we are required to speci�cally consider in the
scheduling model the e�ects of the best-e�ort tra�c in transit on the time-triggered
data streams. The lack of explicit control over the forwarding of best-e�ort tra�c using
commodity hardware must be accordingly modelled.

Incremental Updations

Developing algorithms that can compute transmission schedules for a given set of time-
triggered data streams in a network topology is not su�cient for practical deployment.
We also need mechanisms for modifying the existing schedules without a�ecting the
other time-triggered data streams along with fast algorithms that can compute the
changes that must be made to the schedules. After all, we seek to develop converged
architectures for usage in smart factories where manufacturing systems may be modi�ed
any time.

We, hence, have to consider two variants of the scheduling problem for time-triggered
tra�c, viz., the static and the dynamic scheduling problem. In the static variant, the
time-triggered data streams to be scheduled are known apriori and do not change at
runtime, while the dynamic scheduling problem is aimed at scenarios in which the
data streams to be scheduled in the network may change, for instance, due to connec-
tion/disconnection of new end systems into/from the network. The algorithms for the
static scheduling problem aim to compute optimal solutions while the algorithms for
the dynamic scheduling problem are engineered to deliver solutions faster.

1.2.2 Approach

Our approach to compute transmission schedules and routes for each of the aforemen-
tioned cases is as follows.

The high complexity of the scheduling problem for networks in which transmission
schedules for time-triggered data streams is enforced on the switches as well as on the
end system make it extremely challenging for additionally integrating routing in the
problem formulation. One option to keep the problems tractable is to separate the
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routing and scheduling stages for such networks, i.e., route the time-triggered data
streams independently before computing the schedules based on the computed routes.
However, for this, we would require specialized routing algorithms that are aware of
the scheduling aspect to route the time-triggered data streams before computing their
schedules. This separation of scheduling and routing stages can be further extended
for usage in networks where the end systems are not synchronized, and thus, cannot
enforce schedules.

We combine the scheduling and routing aspects for the networks in which only the end
systems enforce scheduling. This is, too an extent, mandated by the scheduling model
used in such scenarios to result in improved network utilization.

In networks where there are no synchronized clocks, we route the time-triggered streams
over disjoint paths, i.e., spatially isolate the streams.

1.3 Scienti�c Contributions of this Thesis

In this thesis, we introduce scheduling and routing algorithms for computing routes
and schedules for time-triggered tra�c in Ethernet networks depending on where the
schedules can be enforced. We present algorithms for computing optimal and heuristic
solutions to the static scheduling problems which we extend in the next step to also
compute incremental schedules for the dynamic scheduling problems. In particular,
the contributions of this thesis are:

1. We compute transmission schedules for time-triggered data streams in net-
works where end systems are synchronized and switches are compliant with the
IEEE 802.1Qbv standard by mapping the packet scheduling problem to No-wait
Job-shop Scheduling Problem (NW-JSP), a well-known problem from operations
research. The resulting No-wait Packet Scheduling Problem (NW-PSP) can be
formulated as an Integer Linear Program (ILP). We also propose a heuristic
optimization algorithm based on the Tabu-search meta-heuristic for an e�cient
schedule computation. Moreover, we show how to further optimize calculated
schedules by means of a schedule compression algorithm to reduce bandwidth
wastage due to the presence of guard bands isolating the scheduled data streams
and best-e�ort tra�c. Finally, we also extend our solution for computing in-
cremental schedules for the network and discuss the deployment of the solution
in networks where end systems cannot participate in scheduling due to lack of
synchronized clocks.

These contributions are mainly based on [31]. The author of this thesis was
primarily responsible for development of the meta-heuristics and concepts relating
to the schedule compression. Overall, the author of this thesis contributed around
30% of the total content in this paper.

10



1.3 Scienti�c Contributions of this Thesis

2. For computation of transmission schedules for time-triggered data streams in net-
works equipped with the programmable gating mechanisms using the NW-PSP,
the routes for the data streams must be available a priori. We show that the
algorithm used for computing routes for the time-triggered data streams impacts
their schedulability and identify parameters which can be used as heuristics for
developing routing algorithms that are aware of the subsequent scheduling pro-
cess. Based on these heuristics, we propose ILP-based routing algorithms for
improving the schedulability of time-triggered data streams by up to 60% and
30% compared to shortest path routing and equal cost multi-pathing (ECMP),
respectively.

These contributions are based on [32]. The author of this thesis was instrumental
in developing the concepts and for its evaluation. Overall, the author contributed
around 60% of the total content of this paper.

3. We introduced Time-sensitive Software-de�ned Network (TSSDN), an SDN-
based network architecture, that can provide real-time guarantees for time-
triggered tra�c using a data plane consisting of commodity SDN hardware
switches and synchronized end systems. Based on TSSDN, we formulate the
joint scheduling and routing problem for time-triggered data streams in net-
works where scheduling can only be enforced on the end systems and not on the
switches as an ILP. By adjusting the candidate paths over which time-triggered
data streams can be routed, our approach can be adapted to explore the entire
solution space for searching the optimum solution or to quickly compute heuris-
tic solutions which may be slightly sub-optimal. Furthermore, we also show how
the computed schedules can be adhered with using high speed packet processing
frameworks, like Intel's Data Plane Development Kit [33] or netmap [34].

These contributions are based on [35]. The author of this thesis developed the
initial concepts for this work and was responsible for the evaluations. The author
also signi�cantly contributed in the write-up of the paper. To summarize, the
author's total contribution in the content of this paper is around 70%.

4. We also introduce the dynamic scheduling problem in TSSDN networks where
the time-triggered data streams could be scheduled in the network dynamically
without causing any disturbances to the data streams already scheduled in the
network. Our heuristics for this dynamic scheduling problem approximate the
optimal solutions of the corresponding static scheduling problem. We also pro-
pose optimizations to reduce the runtime of these algorithms to under a second
for networks of realistic sizes.

These contributions are primarily based on [36]. The author of this thesis con-
tributed with ideas for this paper and was also responsible for the implementation
and evaluation of the developed concepts. He also participated signi�cantly in the
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write-up of the paper. The overall contribution of the author to this publication
is around 60%.

5. Finally, we introduce the routing problem for time-triggered data streams in
unsynchronized networks where scheduling cannot be enforced on any of the net-
work participants. Here, we route the data streams over disjoint paths, i.e.,
spatially isolate the streams, and use in-network prioritization to bound the
non-deterministic queuing delays for these data streams. We provide e�cient
algorithms for computing the routes for the time-triggered data streams.

This work is based on [37]. The author's contribution to this work is about 60%
of the total content of this publication.

The contributions in this thesis were supported in many places by the guidance and
e�orts of Prof. Dr. Kurt Rothermel and Dr. Frank Dürr. Several student theses
supervised by the author of thesis (in part as well as completely) also contributed
towards the progress of this research presented in this thesis [38] [39] [40].

1.4 Graduate School of Excellence - advanced

Manufacturing Engineering (GSaME)

The research presented in this thesis has been conducted within the framework of
the Graduate School of Excellence advanced Manufacturing Engineering (GSaME),
an excellence initiative at the University of Stuttgart. GSaME is a central scienti�c
institution of the university, principally funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft) since 2007. GSaME brings together various dis-
ciplines ranging from mechanical and production engineering and computer sciences
to business management in a bid to create interdisciplinary research groups working
towards holistic development of concepts for the manufacturing systems of the future.

GSaME is divided into six research clusters, each with a speci�c focus areas. This
thesis lies within the cluster C2 - Informations- und Kommunikationstechnologien für

die Produktion in the GSaME organization. This cluster focuses on the enhancement
of information processing and communication technologies for smart factories. In par-
ticular, this cluster aims to develop novel methods and architectures to bring in cutting
edge information technologies into the manufacturing shop�oor.

Inline with the goals of the research cluster, we seek to utilize latest communication
technologies for handling the tra�c stemming from manufacturing systems in this the-
sis. The interdisciplinary nature of GSaME is also re�ected in this thesis. In our
research, we deal with problems relating to novel communication technologies foreseen
to be deployed in the manufacturing systems of the future. We borrow well-established
methods and results from the operations research branch of business management and
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apply it to solve optimization problems for e�ciently using the communication infras-
tructure in smart factories.

1.5 Structure of this Thesis

This thesis is structured as follows. In Chapter 2, we present a brief background of
the networking technologies that are used in this thesis. In particular, we introduce
the extensions to the IEEE 802.1Q standards relevant for handling scheduled tra�c
like time-triggered data streams. We also present a brief summary of OpenFlow, a
popular SDN southbound protocol, used for implementing the routing algorithms in
this thesis.

Chapter 3 presents our uni�ed network model, speci�cally our assumptions pertaining
to the network data plane and the network control plane, along with our model of
time-triggered data streams.

In Chapter 4, we introduce the mapping of the scheduling problem in the networks
compliant with the IEEE 802.1Qbv standard to the No-wait Job-shop Scheduling Prob-
lem (NW-JSP) and present heuristics based on Tabu-search for e�ciently solving this
problem. This chapter also presents the usage of Intel's Data Plane Development Kit
(DPDK) for precise adherence to the computed schedules by the end systems.

Chapter 5 introduces the routing problem, i.e., the impact of routing time-triggered
data streams on the computed schedules, for the networks compliant with the
IEEE 802.1Qbv enhancements. It also presents ILP based formulations for computing
routes for time-triggered data streams in such networks.

The architecture of TSSDN and the static scheduling and routing problem in networks
where the schedules are enforced at the end systems alone is presented in Chapter 6.
For this problem, we not only present an ILP formulation that computes the optimal
schedules and routes, but also two heuristic solutions by restricting the number of paths
over which time-triggered streams can be routed.

The dynamic scheduling problem in TSSDN is presented in Chapter 7. We present
optimized scheduling algorithms that can compute the incremental schedules and routes
for time-triggered data streams in realistic scenarios under a second.

In Chapter 8, we introduce the routing problem for time-triggered data streams in
networks where the network participants cannot enforce schedules due to lack of syn-
chronized clocks. The chapter also presents e�cient algorithms based on meta-heuristic
approaches to compute these routes for time-triggered data streams.

We conclude the thesis in Chapter 9 with a brief discussion of our contributions and
an outlook towards future research in this direction.
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Summary

With the advent of Industrial Internet of Things (IIoT), there is a growing desire to have
converged networks for transporting time-sensitive tra�c along with best-e�ort tra�c
in manufacturing systems. The proliferation of Ethernet along with its rapid pace of
development has made it a strong contender for this purpose. However, Ethernet being
designed for providing best-e�ort communication services, is not suitable for handling
real-time tra�c without further enhancements. An idea to provide bounded end-to-end
latency and jitter for time-triggered data streams, for instance, a stream of samples
transmitted by a sensor, in Ethernet is to schedule the traversal of such streams through
the network such that the indeterministic queuing delay encountered by these streams
is bounded. The computation of these schedules must take into account the capabilities
of the network participants, i.e., who would be enforcing the schedules. Another major
factor that a�ects the computation of schedules for time-triggered data streams is the
paths over which these streams are routed.

This thesis mainly deals with di�erent scheduling and routing problems, most of which
have a high time complexity, with respect to the handling of time-triggered data streams
in Ethernet networks. In particular, it classi�es the solution space for scheduling the
time-triggered data streams into four parts based on where the computed schedules are
to be enforced. This thesis provides scheduling and routing solutions for each of these
di�erent scenarios.
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CHAPTER 2

BACKGROUND

This chapter mainly presents di�erent networking technologies and relevant IEEE stan-
dards that we refer to in this thesis for implementing routing and scheduling of time-
triggered data streams.

2.1 Software-de�ned Networking

As already mentioned in Chapter 1, Software-de�ned networking (SDN) aims to im-
prove �exibility of computer networks. The SDN paradigm is based on two main
principles, viz., the separation of the network control plane from the network data
plane and the logical centralization of the control plane with a global view on the data
plane. The control plane interacts and con�gures the data plane using standardized
interfaces known as the southbound protocols. OpenFlow, from the Open Networking
Foundation, is one of the most popular southbound protocols and is on the path to
become the de-facto SDN southbound protocol [41].

OpenFlow is a communication protocol between the data plane elements (switches)
and the network controller hosting the control plane. Using OpenFlow, the network
controller can program the routing tables of the switches, thus in�uencing the routes
of the tra�c in the data plane. In this thesis, we use OpenFlow for routing time-
triggered data streams based on their computed schedules and routes in the Time-
sensitive Software-de�ned Network (TSSDN) presented in Chapter 6. Though Open-
Flow is well-documented, this section brie�y describes the working of the protocol for
the sake of completeness.
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2.1.1 OpenFlow

OpenFlow switches process received packets based on the entries in its routing tables,
also known as �ow tables. Each entry (cf. Table 2.1) in the �ow table represents a
forwarding rule consisting of match �elds, instructions and additional information for
packet processing. Match �elds store the values for the layer 2�4 header �elds of the
network stack which must match with those of the packet being processed for the rule
to apply. If the rule applies for the packet being processed, then the actions speci�ed in
the instructions �eld will be executed on the packet. The possible actions range from
rewriting some header �elds like the source or destination MAC addresses to forwarding
the packet over a certain egress port or even dropping the packet.

Additional information includes counters which store the number of packets that
matched the corresponding �ow table entry and were accordingly processed. The pri-
ority value is used to resolve con�icts when multiple �ow table entries are applicable
for any of the packets. The timeouts specify the amount of time for which the �ow
table entry is valid. The timeouts can be speci�ed in terms of maximum amount of
time for which the rule exists (hard time-out) or in terms of idle time after which
the rule expires (soft time-out). OpenFlow also supports wildcarding of �elds to have
coarse-grained matches for the �ow tables, thus enabling multiple �ows to match on
the same rule. It also allows chaining of actions to create a pipeline for more complex
operations in the data plane.

Match Fields Instructions Counters Priority Timeouts Cookie

Table 2.1: Flow table entries in an OpenFlow switch [42].

The OpenFlow protocol allows the SDN controller to connect to OpenFlow switches
over a secure channel and read/write �ow table entries, and thus, in�uence the routing
of tra�c through the network. The possibility of dynamically updating the �ow tables
brings its own set of challenges, e.g., the consistency of �ow table entries across the
switches in the network [43].

Recent versions of OpenFlow (since v1.4) provide transactional (all or nothing) se-
mantics for updating �ow table rules to avoid these consistency issues. We exploit
these features for dynamically setting up time-triggered data streams in TSSDN (cf.
Chapter 7) while avoiding problems for the existing data streams.

2.2 Time-sensitive Networking

The Institute of Electrical and Electronics Engineers (IEEE) set out in 2005 to equip
Ethernet networks with extensions that would enable its usage for handling di�erent
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classes of real-time tra�c along with best-e�ort tra�c. The IEEE 802.1 AVB Task
Group, now rechristened as the Time-sensitive Networking (TSN) Task Group, was
created for this purpose. At the time of writing this thesis, the TSN Task Group
had published a series of supplements for the existing IEEE 802.1Q standard, each
targeting incorporation of speci�c real-time features in Ethernet [16]. Furthermore,
several other extensions in draft stage were also intensively being worked upon for �nal
publication.

The architecture of these extensions is in�uenced by the SDN paradigm of separation of
concerns and centralized network con�guration [25], i.e., these extensions also rely on
a centralized network controller dealing with network con�guration. A non-exhaustive
list of TSN standards broadly classi�ed into four categories is as follows:

1. Clock Synchronization

• IEEE 802.1AS [29] - Timing and clock synchronization: Provides accurate
clocks to the order of nanoseconds.

2. Scheduling of Tra�c

• IEEE 802.1Qav [44] - Forwarding and Queuing Enhancements for Time-
sensitive Streams: Speci�cations for providing performance guarantees to
allow for time-sensitive tra�c like real-time audio video streams.

• IEEE 802.1Qbv [26] - Enhancements for Scheduled Tra�c: Time-aware
shapers targeting real-time communication with deterministic bounds.

• IEEE 802.1Qbu [45] - Frame pre-emption: Suspension of transmission of
non-time-critical frames to transmit time-sensitive tra�c.

• IEEE 802.1Qci [46] - Per Stream Filtering and Policing: Detection and
mitigation of potentially disruptive transmissions.

3. Bridging/Routing

• IEEE 802.1Qca [27] - Path Control and Reservation: Provides explicit path
control, bandwidth reservation, and redundancy for data streams.

• IEEE 802.1CB [47] - Frame Replication and Elimination for Reliability:
Provides mechanisms for frame replication on disjoint paths, sequence num-
bering and duplicate elimination.

4. Con�guration

• IEEE 802.1Qat [48] & IEEE 802.1Qcc [49] - Stream Reservation Protocol
along with Enhancements and Performance Improvements: Provides proto-
cols, procedures and managed objects for bridges and end stations.
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2 Background

Figure 2.1: Programmable gating mechanism as an enhancement for handling sched-
uled tra�c [16].

In this section, we brie�y introduce two of these extensions which we use for handling
time-triggered tra�c in this thesis.We summarize the enhancements speci�ed in the
IEEE 802.1Qbv standard for handling scheduled tra�c along with the functioning of
the IEEE 802.1Qbu standard which enables frame preemption in Ethernet.

2.2.1 IEEE 802.1Qbv - Enhancements for Scheduled Tra�c

The IEEE 802.1Qbv [26] is an extension for the IEEE 802.1Q published in 2016 which
speci�es the enhancements in Ethernet for handling scheduled tra�c. This standard
introduces a time-based programmable gating mechanism (cf. Figure 2.1), also referred
to as time-aware shapers, that controls which of the queues at the egress port are
considered for transmission selection.

The gating mechanism is to be programmed, for instance, over Simple Network Man-
agement Protocol (SNMP), with a sequence of gate events, each consisting of a relative
time-stamp (represented as Ti in Figure 2.1) to the previous event in the sequence and
a bit-mask indicating the queues which are to be considered for transmission selection
till the next event. Packets in a queue are considered for transmission only if the cor-
responding gate is in �open� state. For instance, in Figure 2.1, after time T2 all gates
are closed (represented as state 0), while after time T3 only the gate for tra�c class 7 is
open (represented as state 1). The programmed sequence is continually repeated after a
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2.2 Time-sensitive Networking

(a) Explicit Guard Bands (b) Implicit Guard Bands

Figure 2.2: Approaches to isolate scheduled tra�c from best-e�ort tra�c in
IEEE 802.1Qbv networks

pre-programmed duration, denoted as Tcycle, resulting in a cyclic pattern of gate events
for the queues of an egress port. Moreover, these cyclic patterns of gate events of the
ports for all switches can be precisely aligned using clock synchronization protocols. It
may be interesting to note that the switches equipped with these enhancements are no
di�erent than usual Ethernet switches implementing priority based forwarding when
the gates of all queues are open.

In order to e�ectively deploy these enhancements to handle scheduled tra�c, one or
more queues per port is exclusively reserved to handle time-triggered data streams, e.g.,
queue corresponding to tra�c class 7 is reserved for scheduled tra�c in Figure 2.1. For
now, we assume that the best-e�ort tra�c uses all the other queues of the ports. The
scheduled tra�c is directed into the corresponding queue(s), for instance, by means
of Priority Code Point (PCP) �eld in the IEEE 802.1Q VLAN header. The gating
mechanism is then used to isolate this tra�c from all the other tra�c emerging from
the other queues by means of the so-called �guard bands�. The guard bands ensure that,
on opening the gates corresponding to the scheduled tra�c, the transmission of packets
belonging to the time-triggered streams can immediately commence. The guard bands
are necessitated by the fact that the closing of any gate does not have an impact on
the transmission of the packet being currently transmitted even if it belongs to the
queue whose gate is being closed. The switch continues its transmission till the current
packet is completely transmitted. To ensure that the port is free for transmission when
the gate for scheduled tra�c is opened, guard bands avoid starting the transmission
of any new packet belonging to any other classes of tra�c immediately prior to the
opening of the gate for scheduled tra�c. Hence, the width of guard bands, tg, must be
at least equal to the time required for serializing an MTU-sized packet, i.e., 1500 bytes
for Ethernet, on the port of the switch. Obviously, a signi�cant amount of bandwidth,
if not all, enclosed in these guard bands is wasted.

The guard bands are created by closing the gates for best-e�ort tra�c at least time tg
in advance before opening the gate for scheduled tra�c. For instance, in Figure 2.2a,
the gates for best-e�ort tra�c are closed at time T2 (the current packet being trans-
mitted is however allowed to continue to completion), though the gate for scheduled
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Figure 2.3: Frame preemption as in IEEE 802.1Qbu

tra�c opens only at time T3. This approach requires explicit computation of guard
bands during schedule generation to appropriately program the gate-drivers. An al-
ternative approach speci�ed in the standard is to transmit a best-e�ort packet only if
its transmission would �nish before the corresponding gate closes, e.g., a packet is not
transmitted in Figure 2.2b as its transmission will not �nish before the closure of the
gate. While this approach does not need explicit computation of guard bands, they are
implicitly created, as shown in Figure 2.2b. The approach with implicit guard bands
is slightly better than the one with explicit guard bands as it enables the utilization of
bandwidth wherever possible till the closure of the gate. However, bandwidth wastage
associated with the guard bands between the scheduled tra�c and other tra�c cannot
be completely avoided.

2.2.2 IEEE 802.1Qbu - Frame Pre-emption

IEEE 802.1Qbu [45] is an extension to the IEEE 802.1Q standard dealing with frame
pre-emption in IEEE 802.3 Ethernet networks. With IEEE 802.1Qbu, the queues of an
egress port can be con�gured as an express queue or a preemptable queue. Ethernet
frames from the express queues are designated as express frames, while those in the
preemptable queues are designated as preemptable frames. An express frame ready for
transmission can preempt a preemptable frame being transmitted. The preemptable
frame resumes with its transmission after the express frame �nishes. These express
frames themselves cannot be preempted during the transmission. This also implies
that con�guring a queue as express queue raises its priority above that of all other
queues con�gured as preemptable.

As shown in Figure 2.3, in absence of preemption, an express Ethernet frame can be
delayed by the amount of time required to transmit the remaining part of a preemptable
Ethernet frame. In worst cases, this delay would be equal to the time required for
transmitting an MTU-sized packet. With frame preemption, an express frame is sent

20



2.2 Time-sensitive Networking

between the framelets of the preemptable frame being transmitted. This dramatically
reduces the delay for the express frame. It must be noted that the framelets of the
preemptable frames must also adhere with sizing constraints of the Ethernet standard,
i.e., framelets of sizes less than 64 bytes are disallowed. Thus, frames of sizes less
than 128 bytes (including the 4 bytes of CRC) cannot be preempted despite being
preemptable frames. Furthermore, the last 64 bytes of the transmission of preemptable
frames cannot be preempted. Thus, overall, the frame preemption standard guarantees
delay bounds between 64�128 byte transmission times per hop for express frames given
that the frame is next in its queue for transmission.

To bene�t from frame preemption while handling scheduled tra�c, it is con�gured to
traverse through express queues, while all other tra�c traverses through preemptable
queues. This enables lower bandwidth wastage stemming from the guardbands asso-
ciated with the IEEE 802.1Qbv enhancements by reducing their width to 128 byte
transmission times instead of the time required to serialize an MTU sized packet.

While the frame pre-emption in Ethernet was designed to work in tandem with the pro-
grammable gating mechanism to reduce the network bandwidth inside the guard band,
it may also be used in isolation to simply reduce the waiting time for higher priority
tra�c. This particular feature can be potentially used to improve the performance of
TSSDN, as we discuss in Chapter 6.
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CHAPTER 3

SYSTEM MODEL

This chapter introduces a uni�ed system model for the scheduling and routing algo-
rithms for time-triggered tra�c in Ethernet networks presented in this thesis. We base
our system model, shown in Figure 3.1, on the paradigm of software-de�ned networking,
and hence, divide the model into two parts, viz., the data plane and the control plane.
The data plane and the control plane models are presented in Section 3.1 and 3.2,
respectively, while the modelling of time-triggered tra�c is handled in Section 3.3.

It must be noted that this uni�ed system model presents aspects which are common
across all the scheduling and routing algorithms presented in the thesis. Additional
assumptions and restrictions, if any, are speci�ed in the respective chapters.

3.1 Data Plane

The data plane in our system model consists of end systems (hosts) and network
elements (switches). The network elements are full-duplex layer-2 Ethernet switches
with priority queues (as speci�ed in the IEEE 802.1Q standard) typically available in
commodity switches. We use these queues for isolating the time-triggered tra�c from
the other kinds of tra�c like shaped tra�c, best-e�ort tra�c etc. The diameter of the
network, i.e., the longest shortest-path between nodes, is limited, e.g. to 7 hops, in
accordance to the de�nition of local area networks (LAN) in the IEEE 802.1D standard.
Furthermore, the switches provide interfaces, e.g., OpenFlow, by means of which the
routing of the tra�c in the network can be in�uenced. For networks with synchronized
switches, the clocks of the switches across the network are synchronized using state-of-
the-art clock synchronization algorithms like the IEEE 802.1AS protocol or the IEEE
1588 Precision Time Protocol. The synchronization of switches enable the enforcement
of transmission schedules for time-triggered tra�c in the switches, i.e., in-network. We
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Figure 3.1: Uni�ed System Model

mainly focus on the programmable gating mechanism speci�ed in the IEEE 802.1Qbv
extension for this purpose.

The end systems (also known as hosts) in our network model are basically data sources
and sinks for the network. As we focus on time-triggered tra�c in the networks, only
the end systems acting as sources and sinks of time-triggered tra�c play a role in
the scheduling algorithms, e.g., sensors and actuators in the manufacturing shop�oor.
The sources of time-triggered tra�c transmit application data units encapsulated in
UDP packets with a constant bit-rate. Given that the transmission of time-triggered
tra�c follows a schedule, properties like �ow control, congestion control, etc. (usually
o�ered by the transport layer of the network stack) can be integrated into the gen-
erated schedules by the scheduling algorithms. The source hosts label time-triggered
tra�c using the appropriate prioritization mechanisms available for instance using the
Priority Code Point (PCP) in IEEE 802.1Q (VLAN) header. In networks requiring
synchronization, the clocks of the hosts can be synchronized using appropriate proto-
cols. Additionally, source hosts in such networks are allocated transmission schedules
for time-triggered tra�c which they precisely adhere to, if required using specialized
packet processing frameworks. This implies that these source hosts take into consid-
eration the transmission schedules to adjust their individual task schedules such that
the application data units to be sent are ready in time.
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3.2 Control Plane

In software-de�ned networking, the control plane is primarily responsible for con�gur-
ing the data plane based on its global knowledge. In this thesis, we assume a centralized
control plane which computes transmission schedules and routes for the time-triggered
tra�c based on its knowledge of the network tra�c and network topology while con-
sidering the capabilities of the data plane.

As shown in Figure 3.1, the control plane is hosted on a standard server, referred to as a
network controller. The network controller communicates with the switches using well-
de�ned con�guration protocols, e.g., the popular SDN southbound protocol OpenFlow,
Simple Network Management Protocol (SNMP), etc. Overall, the network controller
has a logically centralized view on the data plane, including the network topology
(can be gathered using the Link Layer Discovery Protocol (LLDP)), tra�c, etc., which
facilitates implementation of control logic like computation of transmission schedules
and routes for time-triggered tra�c. In this thesis, we restrict our focus to centralized
network controller and do not consider the problem of control plane distribution.

3.3 Time-triggered Tra�c

In this thesis, we restrict time-triggered tra�c to periodic �ows (we refer to data
streams also as �ows), i.e., consecutive transmissions of the stream by the source host
are exactly separated by a pre-de�ned time-period. The time-triggered paradigm is
well suited for control systems using sensors with �xed sampling periods or actuators
requiring inputs within given time intervals. While event-triggered control systems
are shown to have better performance, they are still not in wide usage as the events
may be triggered at arbitrary times leading to some amount of indeterminism [50]
[51]. Moreover, event-based paradigm can be adapted to be used over a time-triggered
infrastructure by constraining the events to periodically occurring time-slots [52]. Thus,
we model tra�c stemming from such event-based control systems in the network as
a time-triggered �ow where the period of the �ow is the minimal inter-arrival time of
the events for the corresponding �ows, i.e., such �ows are scheduled into the network
considering the pessimistic case.

For the scheduling and routing algorithms presented in this thesis, time-triggered �ows
are represented by a unique tuple consisting of its source host, destination host(s), its
period, and the number of bytes the source sends during each period.

We base our scheduling approaches on the �no-wait� principle, i.e., we strive that
time-triggered tra�c does not incur any queuing delays in the network. Thus, we
do not account for �ow deadlines in our model. The total delay (cumulative sum
of processing, transmission, and propagation delays) that time-triggered �ows would
incur in our system model would be completely dependent on the paths over which
they are routed. Given that we consider networks of limited sizes (diameter restricted
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to 7 hops), the total delay incurred by time-triggered �ows is also limited. While we
do not focus explicitly on the individual �ow deadlines, our routing approaches can be
easily extended for this purpose.
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CHAPTER 4

SCHEDULING IN NETWORKS WITH IEEE 802.1QBV

EXTENSIONS

4.1 Introduction

In this chapter, we look at the scheduling problem for time-triggered �ows in networks
compliant with the IEEE 802.1Qbv standard. Here, we assume that the network partic-
ipants including the end systems are fully synchronized and the switches are equipped
with a programmable gating mechanism (cf. Section 2.2.1) between the output queues
and the transmission selection module of the ports. Although the IEEE 802.1Qbv
standard speci�es the working of the programmable gating mechanism elaborately, the
computation of gating schedules based on the time-triggered �ows to be accommodated
in the network is out of the scope of the standard. Furthermore, the computation of
these gating schedules is far from trivial as it is imperative to compute per-hop sched-
ules for time-triggered �ows while respecting the constraints of the underlying hardware
to bene�t from the possibility of enforcing schedules on switches.

We tackle this scheduling problem by mapping it to the No-wait Job-shop Schedul-
ing Problem (NW-JSP) [53], a well-known problem from the �eld of operations re-
search [31]. To this end, we show how NW-JSP can be adapted to a No-wait Packet
Scheduling Problem (NW-PSP) for computing compact gating schedules while yield-
ing minimum network delay for time-triggered �ows. We also show that instances of
NW-PSP can be formulated as Integer Linear Programs (ILP) for calculating exact
solutions. However, given the complexity of the scheduling problem, the ILP formu-
lations for NW-PSP do not scale beyond very small problem instances. Therefore,
we also propose a heuristic optimization algorithm based on the Tabu search meta-
heuristic that allows for e�cient schedule calculation. Finally, we also show how to
further optimize the computed schedules through a schedule compression technique for
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reducing the number of entries in the gating program and the corresponding bandwidth
wastage stemming from the resulting guard bands separating the scheduled tra�c from
other tra�c.

While the gating mechanisms in the switches can be used for ensuring schedule compli-
ance for the time-triggered �ows on the switches, no special mechanisms are available
for the end systems, e.g., the source host, to adhere with the computed schedules. De-
viations from the schedules at the source hosts will result in problems not only for the
packets of the corresponding �ows but also for other scheduled tra�c in the network.
Given that the queues at output ports of switches have FIFO semantics, arriving at
any of the network nodes earlier than the computed schedule may result in blocking
of a link for the packets actually scheduled to traverse over the link at that point of
time. Our evaluations show that socket APIs provided by modern operating systems
are inadequate for the end systems to comply with the schedules with su�cient pre-
cision. To solve the problem with schedule adherence, we present a proof-of-concept
implementation showing that the source hosts of time-triggered �ows can accurately
comply with the computed transmission schedule using specialized high speed packet
processing frameworks like Intel's Data Plane Development Kit (DPDK) [33].

This chapter is structured as follows. We present the di�erences to the uni�ed system
model with respect to this scheduling problem and the concrete problem statement in
Section 4.2. In Section 4.3, we describe the mapping between NW-PSP and NW-JSP
and present the corresponding ILP formulation. In Section 4.4, we present an e�cient
Tabu search algorithm for NW-PSP along with our approach to compress schedules.
The usage of packet processing frameworks for schedule adherence is presented in Sec-
tion 4.5. Finally, we present the relevant evaluation results and a brief discussion
on extending these approaches for networks with unsynchronized end systems in Sec-
tions 4.6 and 4.7, respectively.

4.2 System Model & Problem Statement

4.2.1 System Model

For modelling the scheduling problem in networks compliant with the IEEE 802.1Qbv
standards, we specify additional conditions for the network data plane and the time-
triggered tra�c in the uni�ed system model speci�ed in Chapter 3.

In the data plane, we assume that all switches are equipped with the extensions speci�ed
in the IEEE 802.1Qbv standard. We further assume that only one queue is reserved
per output port for scheduled tra�c in all switches. While the standard does not forbid
using multiple queues for scheduled tra�c, we refrain from using more than one queue
as they are usually limited in number, and hence, a valuable resource in a converged
network. We also assume that the queue reserved for scheduled tra�c throughout
the network belongs to the same class, e.g., queue belonging to tra�c class 7. This
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limitation can be set aside for switches allowing modi�cation of the Priority Code
Point (PCP) �eld in the VLAN tag to correspond with the tra�c class of the queue
reserved for scheduled tra�c in the switch at the next hop. Furthermore, we presume
a store-and-forward behaviour of the switches, i.e., the packets are fully received by
the switches before being processed (lookup of �ow tables to decide the output port)
and forwarded. Finally, we also require that the clocks of all end systems and switches
are synchronized using the IEEE 802.1AS protocol.

We model time-triggered �ows as periodic �ows (unicast as well as multicast) with a
constant time-period and payload size, i.e., the source host of a �ow transmits �xed
amount of data periodically. We also add additional restrictions on the time-triggered
�ows with respect to their time-periods. We require that all �ows have time-periods
which are integral multiples of what we refer to as the �base-period�, tbp. Here, base-
period refers to the minimum transmission period that can be supported in the network.
To handle �ows with arbitrary periods, we reduce their time-periods to the nearest
integral multiple of base-period.

4.2.2 Problem Statement

The computation of per-hop schedules for time-triggered tra�c in time-sensitive net-
works, in general, is equivalent to bin packing problem and is thus NP-hard [54].
Given a set of time-triggered �ows along with their routes, schedules which result in
minimal end-to-end delays for packets belonging to the time-triggered �ows are pre-
ferred. Additionally, the scheduling algorithm must also consider the number of gating
events required to enforce the schedule and the resulting bandwidth wastage from the
corresponding guard bands. It must be noted that the gating events resulting from
transmission scheduling can only be reduced and not completely eliminated. For this,
the scheduling algorithm must compute schedules such that gate opening events lead
to transmission of several packets of scheduled tra�c.

To this end, we compute transmission schedules with minimal duration (also known as
makespan) for a set of time-triggered �ows known a priori, as reduced makespan also
imply fewer gate opening events. Further, we compress the schedules using a procedure
designed to explicitly reduce the number of gate opening events.

4.3 Mapping Packet Scheduling to Job-shop

Scheduling

In this section we show how we adapt a well-studied scheduling problem from the �eld
of operations research to model transmission scheduling in networks compliant with
the IEEE 802.1Qbv standard.
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4.3.1 Background: Job-shop Scheduling (JSP)

To de�ne the packet scheduling problem, we �rst brie�y introduce the Job-shop Schedul-
ing Problem (JSP). JSP is a well known scheduling problem from operational research.
Informally, JSP can be described as follows. Given is a set of machines and set of jobs,
each consisting of a sequence of operations like milling, drilling, etc. that have to be ex-
ecuted on the machines in a given sequence. Each operation can be executed on exactly
one machine of the set of machines, e.g., a drilling operation on a drilling machine, and
operations take a de�ned time duration to be completed. Moreover, each machine can
only process one operation at a time. The JSP is a constrained optimization problem
that tries to schedule each operation on the corresponding machine such that no more
than one operation is processed at the same time on any machine (constraint). The
schedule is expressed by the starting times of the operations for each job. Moreover,
JSP tries to minimize the so-called makespan of processing, where makespan is de�ned
as the maximum of the �nishing times of the last operations for all jobs, i.e., the goal is
to �nish the set of jobs as fast as possible (objective). Other objectives can be de�ned
such as minimum tardiness, which are however not useful with respect to the packet
scheduling problem that we discuss here.

The No-wait Job Shop Scheduling Problem (NW-JSP) adds an additional constraint:
after a job is started, it cannot be interrupted, i.e., it must run to completion without
any time gaps between the processing of the operations of the job. With this constraint,
the schedule can be de�ned by the starting time of the �rst operation of each job alone.
The no-wait property is important in many manufacturing scenarios. For instance, an
iron has to be forged immediately after heating it up, and as we see later this also has
a meaning for modelling our packet scheduling problem.

It is worth to note that JSP is NP-complete and known as one of the most di�cult
combinatorial optimization problems [55], and NW-JSP is also NP-hard [56].

4.3.2 The No-wait Packet Scheduling Problem (NW-PSP)

We now investigate how to adapt NW-JSP to calculate the transmission schedules for
time-triggered �ows with respect to the gating mechanism. We call the corresponding
problem the No-wait Packet Scheduling Problem (NW-PSP). The overall goal is to
compute the times when packets should be injected into the network by the network
interface controllers (NIC) at the source hosts and the times for opening and closing
the gates for scheduled packets on the corresponding ports of the switches en route its
destination.

The basic idea of mapping NW-JSP to NW-PSP is to map switches and NICs to
machines performing forwarding operations on packets. A time-triggered �ow is then
a job corresponding to a sequence of transmission operations, one for each NIC/switch
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along the given path of the �ow. Packets should be forwarded immediately without
delay, which intuitively corresponds to the no-wait property of NW-JSP.

In order to come up with a formal formulation of NW-PSP, we need to re�ne this basic
idea further. In particular, the mapping �one switch, one machine� is too coarse-grained
since typically a switch can forward several packets in parallel. So we need to ask the
question: Which operations can or cannot be performed in parallel with respect to
forwarding of packets?

The network delay is more complex than the processing times for the operations of the
jobs in the manufacturing shop�oor. Network delay can be broken down into several
types of delays, viz., the propagation delay of signals along the link, the processing delay
for deciding on which port to forward an incoming packet based on the �ow tables,
the queuing delay of a packet in the queue of an outgoing port, and the transmission
delay to serialize the packet on the wire. Note that the time intervals for propagation,
processing, queuing, and transmission of each packet are ordered strictly sequentially
and do not overlap since we assume a store-and-forward behaviour for switches rather
than cut-through forwarding. Before a packet can be processed, it must be received
completely and put into an internal bu�er. Packet processing then inspects the header
�elds and decides into which outgoing queue should the packet be enqueued. When
processing is �nished, the packet can be transmitted on the outgoing link as soon as it
is at the head of the queue and the corresponding gate is open.

Due to physical restrictions, two packets cannot be transmitted over the same outgoing
port at the same time as their electrical signals could potentially interfere with each
other. Therefore, the transmission intervals of two packets using the same outgoing
port must not overlap, e.g., the transmission of packets belonging to Flow 2 and Flow 3
over Port 5 of the same switch in Figure 4.1. However, a switch can process several
packets received in parallel from di�erent incoming ports at the same time as shown for
Flow 1 and Flow 2 in Figure 4.1. On similar lines, a NIC cannot transmit two packets
at the same time.

Based on this observation, switch ports and NICs now correspond to machines of
NW-JSP. The set of all switch ports and NICs in the network is denoted as P ≡
{P1, . . . , Pm}. Time-triggered �ows correspond to jobs, and we denote the set of �ows
as F ≡ {F1, . . . , Fn}. Each �ow Fi consists of a sequence of transmission operations

Oi ≡ (Oi,1, . . . , Oi,ni), with one transmission operation for each outgoing port along
the given path of the �ow. Relation R : O 7→ P maps each transmission operation
to an outgoing switch port, i.e., relation R corresponds the mapping of the operations
of the jobs to the machines. Sequence Oi together with relation R are parameters of
NW-PSP de�ning the route of a �ow through the network.

Similar to the machines processing operations of a job, switch ports and NICs perform
the transmission of packets of a �ow. Note that according to this model, an operation
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Figure 4.1: Timeline of forwarding three packets of three di�erent �ows over one switch.
No queuing delay is shown since packets are forwarded immediately with
no-wait packet scheduling.

only includes the transmission. Packet processing and propagation are not parts of
the operation. The processing time of a job then corresponds to the transmission
delay of a packet, which is de�ned by the given packet size and the data rate of the
corresponding switch port or NIC. Parameter dtransi,j de�nes the transmission delay for
each transmission operation Oi,j of �ow Fi.

In addition to the transmission delay, we also have to consider propagation, processing
and queuing delays. Due to the no-wait property, the queuing delay is per-de�nition
zero. Furthermore, without loss of generality, we assume the same processing delay,
dproc, and propagation delay, dprop, for all switch ports and NICs in the network. This
simplifying assumption could be easily relaxed by de�ning individual processing and
propagation delays for each switch port and NIC, respectively.

In contrast to adjacent operations of a NW-JSP job, in NW-PSP adjacent transmis-
sion operations on neighbouring switches of a �ow cannot be processed �back-to-back�
without time gap. After one switch port has completed the transmission of the last bit
of the packet, the bit �rst has to propagate to the neighbouring switch, and then the
packet needs to be processed before the transmission on the next outgoing port can
start. Therefore, we need to consider the propagation and processing delays preceding
each transmission interval. Let Di,j de�ne the cumulative network delay (processing,
propagation, and transmission delay) up to and including transmission operation Oi,j

of �ow Fi:

Di,j = (j − 1)(dprop + dproc) +
∑

k=1,...,j

dtransi,k (4.1)

Then the essential constraint that two con�icting transmission operations Oi,k and
Oj,l, belonging to �ows Fi and Fj respectively, using the same outgoing port must not
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overlap in time can be de�ned as follows:

tj − ti ≥ Di,k − (Dj,l−1 + dprop + dproc) OR (4.2)

ti − tj ≥ Dj,l − (Di,k−1 + dprop + dproc) (4.3)

Here, ti and tj denote the start of the packet transmission on the source hosts for
�ows Fi and Fj , respectively. Informally, these constraints ensure that before the �rst
bit of a packet from �ow Fi is transmitted over a switch port, the last bit of the
packet from �ow Fj must have been transmitted over this port, or vice versa. tj +
Dj,l−1+ dprop+ dproc de�nes the time when the packet is enqueued in the queue of the
outgoing port after having transmitted this packet over the previous port, propagating
the packet to the next switch, and processing the packet there. Note that packets
are transmitted immediately after processing without waiting in the outgoing queue of
the port (no-wait forwarding property of NW-PSP). Thus, packets travel through the
network �non-stop� with minimum possible network delay. For this very reason, we also
do not consider the deadlines of the �ows, i.e., the maximum end-to-end latency that
packets belonging to a �ow may su�er in the network, while modelling the scheduling
problem. Another inherent advantage of no-wait forwarding is that the queue size of

scheduled tra�c is minimal, and that the switches can potentially dedicate this memory
to best-e�ort tra�c.

The set of all �ow start times T ≡ {t1, . . . , tn}, i.e., the time of injecting packet at
source NIC of the corresponding �ows, are the variables of NW-PSP. Given these start
times, we can calculate packet schedules for transmitting packets on all switches (gate
opening times) lying in the route of the �ow. A transmission operation Oi,k needs to
be scheduled at time ti,k = ti+Di,k−dtransi on port R(Oi,k). This schedule is repeated
in each cycle, where t = 0 de�nes the start of a cycle and tbp is the length of the
scheduling cycle.

Note that simply repeating the schedule in each cycle only works because of our as-
sumption that all �ows have the period which are integral multiples of the base-period,
tbp, which is also the length of the scheduling cycle. The source hosts of �ows with pe-
riods higher than the base-period will not transmit during all scheduling cycles, i.e., a
�ow with period twice the base-period will transmit every alternate scheduling cycle.

The objective of NW-PSP is to minimize the �owspan, Cmax, which we de�ne as the
equivalent to the NW-JSP makespan. Let Ci = ti+(ni)(d

prop+dproc)+
∑

k=1,...,ni
dtransi,k

be the �nishing time of �ow Fi. Then, the �owspan Cmax = max{Ci|i ∈ {1, . . . , n}} is
the �nishing time of the �ow �nishing last.

Minimizing the �owspan results in compact schedules where the time-triggered �ows
are not distributed across the whole cycle, but are bunched towards the beginning
of the scheduling cycle. While we discuss other e�ects of this optimization objective
later in Section 4.7, it may be interesting to note that if the �owspan of the computed
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schedule is greater than the base-period, tbp, then the set of time-triggered �ows may
not schedulable. This is because transmissions of time-triggered �ows from one cycle
may interfere with the transmissions from the next cycle. Thus, �owspan also provides
a metric for evaluating the schedulability of a set of time-triggered �ows in a given
topology. We would exploit this property of the �owspan to compute routes for time-
triggered �ows in Chapter 5.

4.3.3 Integer Linear Program for NW-PSP

Similar to the orginal NW-JSP, NW-PSP can be also formulated as an Integer Linear
Program (ILP).

The ILP formulation for this problem is as follows:

Minimize Cmax (4.4)

Subject to the following constraints:

∀{Oi,k, Oj,l} ∈ K
tj − ti −Di,k +Dj,l−1 + dprop + dproc ≤ c xi,k,j,l

(4.5)

∀{Oi,k, Oj,l} ∈ K
ti − tj −Dj,l +Di,k−1 + dprop + dproc ≤ c (1− xi,k,j,l)

(4.6)

The constraints of Equation 4.5 and 4.6 correspond to the constraints of Equation 4.2
and 4.3, respectively, after translating the disjunctive form to a conjunctive form as
required by ILPs. To this end, we introduce binary variables xi,k,j,l ∈ {0, 1} for each
pair of con�icting forwarding operations {Oi,k, Oj,l} with the same outgoing port. Set
K = {{Oi,k, Oj,l} |R(Oi,k) = R(Oj,l)∧Oi,k 6= Oj,l} de�nes all such pairs of con�icting
forwarding operations. Here, c is a large constant (virtually in�nity). Depending on
the value of x, either the �rst or second constraint is e�ective with a right-hand side
value of zero. The ine�ective constraint is then evaluating to true since �in�nity� is
greater than anything, ensuring the correct semantic of the conjunctive form.

4.4 Heuristics for NW-PSP

Given that NW-JSP can be reduced to NW-PSP, the NW-PSP is a NP-hard problem.
Therefore, we cannot expect to �nd exact solutions e�ciently using the ILP formulation
from the previous section for larger scenarios with many time-triggered �ows. In this
section, we present heuristics for e�ciently solving the NW-PSP based on the Tabu
search algorithm for NW-JSP from [56]. We also use the exact solutions generated
from the ILP formulations as a benchmark for our heuristics.
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For the ease of modelling, we make a few changes to the mapping between NW-PSP
and NW-JSP. Instead of using a single machine to model a switch port, we now model
it using multiple machines: one for processing of incoming packets on the port (this
models the processing and the propagation delay incurred by the packet), and one for
transmitting the packets going out on the port as explained in Section 4.3, i.e., we now
use additional machines to account for processing and propagation delays of packets.
Thus, a time-triggered �ow is now modelled to consist of a sequence of operations
(transmission and processing) executed by di�erent machines. After a machine trans-
mits a packet on a link, another machine responsible for the input port on the next
switch in its path processes it. While this mapping makes it easier to apply Tabu search
for �owspan optimization of NW-PSP, this model also has the inherent shortcoming
that processing of incoming packets on the same port cannot be achieved in parallel
as in the unmodi�ed problem formulation. However, such situations would not arise
as the transmission delays, typically, dominate the processing delays in commodity
switches.

With the no-wait constraints also applicable for NW-PSP, the overall schedule can be
speci�ed by the start times for each of the �ows. The schedule for all the constituent
operations of a �ow can be calculated from its start time. Hence, it su�ces if the
heuristic is speci�cally targeted for computing the start times of the �ows. To this
end, we split the NW-PSP into a time-tabling problem and a sequencing problem
based on the approach in [56]. The time-tabling problem deals with the computation
of the start times for all the time-triggered �ows belonging to a totally ordered set of

�ows. The sequencing problem, on the other hand, deals with totally ordering the set

of �ows being scheduled such that the given time-tabling algorithm results in a schedule
with minimal �owspan. In the following, we describe the used time-tabling algorithm
(based on a greedy approach) and the sequencing algorithm (based on Tabu search).

4.4.1 Time-tabling Problem

Given a totally ordered set of �ows (solution of the corresponding sequencing problem),
we use a greedy approach to solve the time-tabling problem for computing start-times
of the �ows. Consider a totally ordered set of �ows, FO ≡ {F1, F2, . . . , Fn|Fi →
Fj ;∀i ≤ j}. The time-tabling algorithm, presented in Algorithm 1, allocates the
earliest possible starting time (Line 4) for each �ow in set FO based on their order,
one �ow at a time, subject to the constraints imposed by the starting times of all the
preceding �ows, i.e., no machine (switch port/NIC) should be scheduled to process or
transmit packets belonging to more than one �ow at the same time. The algorithm
sets initial start time of the �ow being scheduled as 0, and increases it in steps (size
based on set of con�icting operations of preceding �ows) till all the operations of the
current �ow are scheduled without any con�icts with the preceding �ows. Based on
the start times of the �ows and its cumulative times for executing its operations, the
�owspan is computed (Line 6).
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While earliest possible starting time of �ows as a heuristic do not always yield optimal
solutions, they approximate schedules with minimal �owspan [56]. It may be noted
that the worst-case time complexity of this time-tabling algorithm is O(n3N3), where
n is the number of �ows and N is the maximum number of constituent operations
(transmission as well as processing) in any �ows. Given our assumption of a bounded
network diameter, the maximum number of constituent operations is also bounded.
This is because the length of path over a �ow may be routed is restricted to 7 hops.
Thus, the worst-case time complexity of the used time-tabling algorithm is O(n3).

Algorithm 1 Time-tabling Algorithm

1: function Timetabler(FO)
2: Schedule ← { }, Span ← 0
3: for each �ow in FO do

4: FlowStartTime ← Earliest possible start time
5: Schedule[�ow ] ← FlowStartTime

6: Span ← max(Span, FlowStartTime + �ow.totalFlowTime)
7: end for

8: return (Span, Schedule)

9: end function

4.4.2 Sequencing Problem

The sequencing algorithm creates a total ordering of �ows in the set of �ows to be
scheduled, F , to minimize the resulting makespan of the schedule computed by the
time-tabling algorithm. The search space for the sequencing problem consists of n!
possibilities, where n is the number of �ows in the NW-PSP instance. A brute force
approach to compute the optimal solution would involve each of the possible sequences
to be executed with the presented time-tabling algorithm (complexity of O(n3)), and
would therefore not scale to large problem sizes. Hence, we use Tabu search for a
guided exploration of the solution space.

Tabu search is a well de�ned method for exploration of solution space in optimization
problems [57]. Tabu search mainly generates an initial solution (based on a heuristic)
and iteratively processes it by selecting the best possible solution in the neighbour-
hood that does not violate certain criterion (being on the tabu list) for the next it-
eration. After a pre-de�ned number of iterations, the best-ever solution encountered
over these iterations is selected. We adapt the Tabu search developed for solving a
NW-JSP (from [56]) to solve an instance of NW-PSP modelling the scheduling prob-
lem in discussion. The existing algorithms for NW-JSP have been primarily designed
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Algorithm 2 Sequencing Algorithm

1: function Sequencer(F )
2: currentSoln ← GenerateInitialSolution(heuristic(F ))
3: bestOrder ← currentSoln

4: while Termination criteria not satisifed do
5: neighbourhood ← GenerateNeighbourhood(currentSoln)
6: for each soln in neighbourhood do

7: computeMakeSpan(soln)
8: end for

9: selectedSoln ← SolutionSelection()
10: currentSoln ← selectedSoln

11: if selectedSoln better than bestOrder then

12: bestOrder ← selectedSoln

13: end if

14: end while

15: return bestOrder

16: end function

and evaluated for problem with 30�50 jobs. For NW-PSP, we aim for a solution that
scales up to 1000+ �ows. In the following, we describe the steps involved in our Tabu
search method for the sequencing problem, summarized in Algorithm 2.

Initial Solutions

In Tabu search, initial solutions are typically generated using heuristics. Of the many
popular heuristics available for NW-JSP, we chose two for generating initial solutions
for NW-PSP, viz., the sum of processing times for all the constituent operations of
a �ow and the processing time of the longest operation of a �ow. The �ows may be
ordered using these heuristics in ascending or descending order to create an initial
solution. As suggested in [56], we also use random ordering for obtaining an initial
solution. Overall, we execute �ve runs of the Tabu search algorithm, each starting
with a di�erent initial solution�four generated from the two heuristics in ascending
and descending order, one based on a random ordering�and choose the best solution
with respect to the �owspan from all these runs.

Neighbourhood Generation

After the generation of the initial solution, we iteratively process them to reduce the
resulting �owspan. During each iteration the neighbourhood of the current solution
is generated based on its �critical �ow�. Critical �ow of an ordering is the �ow which
�nishes last as per the schedule generated by the time-tabling algorithm, and is thus,
responsible for the current �owspan. In presence of several critical �ows, one of them is
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randomly selected. The principle of our neighbourhood function is to transform critical
�ows of the current solution into non-critical �ows, and thus, result in reduction of
�owspan.

We mainly use two unary operators�Insertion and Swapping�that operate on a �ow
for generating the neighbourhood of the current solution with respect to the �ow. The
Insertion operator removes the critical �ow from the ordering and inserts it before the
operand �ow. The Swapping operator swaps the critical �ow with the operand �ow
while maintaining the order of all the other �ows. We de�ne the neighbourhood of
the current solution as the set of all possible orderings obtained by execution of the
Insertion and Swapping operators on all �ows preceding the critical �ow in the current
ordering. Thus, the neighbourhood contains, at the most, 2(n− 1) possible solutions,
where n is the number of �ows.

Solution Selection

After the neighbourhood generation, we select a new solution for the next iteration.
To this end, all orderings from the neighbourhood are evaluated using the time-tabling
algorithm to determine their �owspan. The ordering with the lowest possible �owspan
in the neighbourhood which does not violate the tabu list, or satis�es the aspiration
criterion is selected for subsequent iterations. The tabu list contains a list of �ows that
were identi�ed as critical �ows in previous x iterations. Solutions in the neighbourhood
whose critical �ow(s) lies in the tabu list are rejected even if they have a low makespan.
This is primarily done to avoid the solutions at the local optimum. The aspiration
criterion, however, overrules the tabu list, i.e., we ignore the tabu list and accept
an ordering, if the �owspan of the solution is lower than that of the best ordering
encountered so far.

We terminate our execution runs when previous y iterations of the algorithm do not
yield an improvement on the best �owspan encountered till the moment. The perfor-
mance of our algorithm can be tuned with di�erent values of x and y. While higher
values for x and y may yield better schedules, it would also result in increased execution
times.

4.4.3 Schedule compression

This procedure of schedule compression is speci�cally aimed at reducing the number
of gate opening events in the computed transmission schedules. Fewer gate opening
events also imply a smaller schedule, and thus, lower memory requirements. Addressing
memory limitations in network elements, for instance, the size of TCAM tables used
to store routing information, has always been a major research goal [58].
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Figure 4.2: Benchmark topology with 10 hosts (A1�A5, B1�B5) connected to 2 switches
(S1 and S2) with 10Gbps links and 5 time-triggered �ows (Fi : Ai → Bi;
i ∈ [1 . . . 5])

With respect to NW-PSP, reducing the number of gate opening events in
IEEE 802.1Qbv networks is equivalent to ensuring that machines responsible for trans-
mission are scheduled to work in fewer but longer sprints instead of several shorter
bursts, i.e., a gate-open event results in transmission of several packets of scheduled
tra�c. Our idea of schedule compression is based on the principle that start times
for certain operations may be delayed such that they end just before the succeeding
operations begin on the corresponding machines. In terms of the schedules, it means
that the transmission of a scheduled packet may be delayed to a time such that it is
�nished just before the next scheduled packet for transmission on the same port is
available. Overall, this relaxes the no-wait constraint but our algorithm ensures that
the �owspan from the original schedule remains una�ected. We explain our approach
with a simpli�ed example on a small topology.

Consider the benchmark topology shown in Figure 4.2. In this scenario, �ve time-
triggered �ows (Fi : Ai → Bi) traverse over the link S1 − S2. The transmission of the
�ows over this link is a con�icting operation and cannot proceed in parallel. Figure 4.3
represents a potential schedule (not necessarily with minimal �owspan) for the time-
triggered �ows in the scenario. We mainly focus on the transmission operations of the
�ows over the link S1 − S2. The schedule shows the start times for all the operations
of the �ows: transmissions (denoted with subscript t) and processing (denoted with
subscript p) on the switch ports and NICs. The schedule of the machine responsible for
transmission on link S1−S2 is of interest with respect to the compression algorithm. As
can be seen in Figure 4.4, there are two gate opening events on the machine responsible
for transmission on link S1 − S2�the �rst handles �ow F1 while the second handles
all other �ows. As shown in Figure 4.3 and Figure 4.4, the schedule can be modi�ed
to delay the transmission of packet belonging to �ow F1 such that a single gate open
event can service packets from all �ows in a quick succession.
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Figure 4.3: Sample schedule for the 5 �ows on the benchmark topology in Figure 4.2.
Here, t and p represent the time spent for transmission and processing
operations on the corresponding switches or NICs, respectively. E.g., A1,t

is the transmission delay on the NIC of source host A1. Slack represents the
possibility to delay a particular operation in order to compress the schedule.

This method may not always result in a single gate open event per link like in the
presented example. Delaying the transmission of a packet of a �ow impacts the starting
times of the subsequent operations for the �ow. It may so happen that they cannot
be delayed, for instance due to impact on the schedule �owspan. Further, it must
be ensured that the order in which the switch processes/transmits packets is not be
altered while delaying transmission of any packet belonging to a �ow. For instance, in
Figure 4.4, the transmission of packet of �ow F1 on link S1−S2 cannot be delayed such
that packet belonging to �ow F2 is transmitted before it. This would violate the FIFO
semantics of the queues in switches. Given these constraints, compression of schedules
is not a trivial problem.

In the following, we present an e�cient algorithm for compressing the schedules to
reduce the number of gate opening events in the entire schedule. This algorithm can also
be used for compressing schedules that were computed using methods other than the
presented Tabu search algorithm, e.g., the ILP formulation introduced in Section 4.3.3.
Basically, the scope for schedule compression stems from the existence of �slack� in the
start times of the operations, as shown in Figure 4.4. Slack for a given operation
is the amount of time by which its start may be delayed on a machine such that it
is �nished before the next operation is due to start on the machine. For instance,
consider a machine that processes operations O1, O2, O3 (belonging to di�erent �ows),
each needing three time units, between times 1�3, 6�8, 9�11, respectively. Slack for
the operations O1 and O2 is 2 and 0, respectively, i.e., the start of operation O1 can
be delayed by up to 2 time-units and must start at time t = 3 to be �nished before O2

is due to start, while start of O2 cannot be postponed.
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Figure 4.4: Schedule (before and after compression) for transmission on link S1 − S2.
The transmission of Flow F1 is delayed to �nish just before the transmission
of Flow F2 is scheduled to start.

Delaying an operation also implies a delay for the subsequent operations of the �ow.
Physically, this means that a packet cannot be processed on the switch next hop be-
fore it is completely transmitted from the current switch. Thus, the amount of time
by which each operation can be delayed clearly depends on the slack of all the sub-
sequent operations of the job. Based on the slack for each operation, the amount of
time by which they can be delayed is computable. For a �ow with N operations,
{O1, O2, . . . , ON}, and corresponding slack times {S1, S2, . . . SN}, an operation Oi is
delayed by time ti, where ti = min(Si, Si+1, . . . , SN ). Our algorithm, summarized in
Algorithm 3, computes slack for all operations of all jobs (Line 7) and based on the
slack computes the times by which each of the operation may be potentially delayed
(Line 12). Finally, the algorithm delays the start times of the operations based on the
computed delays (Line 14). It does so iteratively till no further operations can be de-
layed. The modi�ed schedules have reduced number of gate opening events compared
to the original schedule prior to the compression.

The time required for each iteration of the compression algorithm is directly propor-
tional to the number of �ows (n) and the maximum forwarding operations per �ow
(N). During each iteration of the algorithm, the start times (after including delays
from previous iterations) of at least one forwarding operation is �nalized. Thus, in the
worst case, the algorithm may need up to N × n iterations. Overall, the worst-case
time complexity of our algorithm is O(n2N2). Given that N is bounded in our sys-
tem model, the time complexity reduces to O(n2). Thus, our schedule compression
approach has a polynomial time complexity.

It must be noted that on account of relaxation of the no-wait constraints for schedule
compression, the end-to-end latency of the time-triggered �ows may increase from the
minimum, i.e., the cumulative processing, propagation and transmission delays of the
�ows. In the worst case, a �ow may su�er latency equalling the length of the scheduling
cycle, tbp. However, our algorithm can be easily extended to take into account the
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Algorithm 3 Compression Algorithm

1: function Compressor(schedule)
2: compress ← True
3: while compress do

4: compress ← False
5: for each �ow do

6: for each operation do

7: slack ← computeSlack(schedule, �ow, operation)

8: end for

9: end for

10: for each �ow do

11: for each operation do

12: delay ← computeDelays(slack)

13: if delaying possible then
14: applyDelays(schedule, �ow, operation, delay)

15: compress ← True
16: end if

17: end for

18: end for

19: end while

20: return sched

21: end function

maximum end-to-end delay that a �ow is allowed to incur while computing the slack
of its corresponding operations.

4.5 Schedule Adherence for End systems

The programmable gating mechanism speci�ed in the IEEE 802.1Qbv standard enables
enforcement of the transmission schedules for time-triggered tra�c on the switches. In-
terestingly, the TSN standards do not specify special mechanisms for the end systems
to adhere with the schedules. Furthermore, the aforementioned gating mechanism is
a time-aware mechanism which is oblivious to the tra�c in the queues, i.e., the gates
cannot be operated based on the packets which are in the queues of its ports. Hence,
it is imperative that the source hosts of time-triggered tra�c stick to the transmission
schedules precisely for adhering with the programmed schedules at the switches. De-
viations at the source host will render the entire schedule useless. Given that we use
only one queue for handling scheduled tra�c, transmission of a packet too early from
its source host may block the switch ports for tra�c scheduled to traverse the port at
that point of time. Similarly, too late a transmission may also result in the closure of
the gates at some switch port leading to blocking of the packet and all the scheduled
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tra�c to follow.

Algorithm 4 Source - Userspace DPDK application

1: function src(basePeriod(bp), transmissionTime(tt))
2: init NIC and sending queues
3: intervalAlarm← �owPeriod

4: firstAlarm← now() + (bp − now()% bp) + tt

5: firstAlarm← firstAlarm− pktCreationTime

6: timer_settime(firstAlarm, intervalAlarm)
7: while True do
8: if alarm is triggered then
9: Create payload by executing required tasks

10: pkt ← dpdk.createPacket()
11: dpdk.sendPacket(pkt)
12: end if

13: end while

14: end function

We evaluated the socket API's in Linux (CentOS, kernel version 3.10) to determine if
they are suitable for usage in source hosts of time-triggered tra�c. For our evaluations,
we deployed two userspace applications which act as source and destination of time-
triggered tra�c on nodes Ai and Bi, respectively, of our benchmark topology (cf.
Figure 4.2). This topology was created using �ve commodity machines (Intel Xeon
E5-1650), each equipped with an Intel XL710 quad 10GbE network interface, and an
Edge-Core cut-through bare-metal switch (AS5712-54X) running PicOS (ver 2.6.1).
The switch was partitioned into virtual switches to create the topology, while each
machine hosted two end systems, for instance, Host A1 and B1 were placed on the
same machine but used di�erent network interfaces. This enabled us to measure end-
to-end latencies (between the source and the destination application) experienced by
the packets of these �ows without synchronizing clocks across the �ve hosts. It may
be noted that the switch we used in our evaluations for schedule adherence did not
support the gating mechanism speci�ed in the IEEE 802.1Qbv standard. However, as
these evaluations were only aimed at determining the precision with which the source
hosts can adhere with the schedule, the lack of scheduling capabilities in the switches
played no signi�cant role in these evaluations.

We measured the end-to-end latency for 10,000 packets (each of size 1500 bytes), one
packet sent every 10ms. Given that processing delay of the switches is about 0.7µs,
one may expect a network latency of about 4�5µs in absence of any queuing or cross
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tra�c. However, the results (cf. Figure 4.5) show the latency varying between 37�
117µs with an average latency of 63.58µs and a standard deviation of 4.88µs with the
usage of socket APIs. Such high jitter is attributed to the variable delays (10�100µs)
that packets incur while traversing the network stack of the operating system [59], i.e.,
invoking send() on a socket does not place the packet on the network interface with
deterministic delay, nor does receive() return with bounded delay after the network
interface receives a packet. These non-deterministic delays incurred in the network
stack of end systems make it impossible to use socket APIs to adhere to the transmission
schedules with high precision.

High throughput packet processing frameworks, like Intel's Data Plane Development
Kit (DPDK) [33] or netmap [34], bypass the network stack by using custom device
drivers and hand the complete control of communications to userspace applications.
These may be used to get around the problem of variable delays in the network stack
of the end systems. To evaluate the feasibility of using these frameworks, we devel-
oped two DPDK applications, one as the source and the other as the destination of
time-triggered tra�c and measured the end-to-end latency between them, similar to
our evaluation of socket applications. The destination application simply receives the
packet from the network interface bypassing the network stack and parses the packet to
decode the information sent by the source. DPDK provides high performance packet
processing API's for this purpose. The source application (pseudo-code in Algorithm 4)
plays an important role with respect to the transmission scheduling. It is responsible
for con�guring timers suitably to trigger packet transmissions. For this we used Linux
interval timers (timer_settime()) that generate an alarm at �xed intervals based on
the base-period (Lines 3�5). The source host can use the generated alarm for trans-
mitting the time-triggered packet prepared beforehand, or use it as a trigger to also
create the packet (generate the payload by executing the sensing or the control tasks
of a cyber-physical system). We use the latter approach (Lines 9�10) and hence ad-
vance the interval timer by pktCreationTime (pro�led beforehand) to compensate for
the time required to generate the payload and create the corresponding packet.

With DPDK API's, the latency incurred by the packets varied in a narrow band be-
tween 7�10µs with an average latency of 7.94µs and a standard deviation of 0.4µs (cf.
Figure 4.5). Overall, the performance of the aforementioned packet processing frame-
works is up to an order of magnitude better in comparison to the socket APIs. The
low end-to-end latency between the source and destination applications indicate that
packets are placed on the network interface with minimal delay after the corresponding
API is invoked. Furthermore, though the packets are slightly delayed in the DPDK
stack, the delays are almost constant making it suitable for usage in the source hosts
of time-triggered �ows.
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Figure 4.5: Intel's DPDK versus Sockets

4.6 Evaluations

We present the evaluation results of our scheduling approach for networks compliant
with the IEEE 802.1Qbv standards in this section. We evaluated our solutions in
various scenarios (randomized topologies with a set of time-triggered �ows randomly
generated) to determine the quality of �ow schedules they compute (in terms of �ows-
pan), their scalability and the number of gate-opening events they result in. It must be
noted that, as described in Section 4.4, the performance and the worst-case execution
times for our approaches do not depend on the type or size of the topologies but rather
on the number of �ows being scheduled. Nonetheless, we used various models of ran-
domized graphs (Erd®s-Rényi (ER) model [60], random regular graphs (RRG) model,
and the Barabási-Albert (BA) model [61]) created using NetworkX [62], a Python based
library for handling complex networks, to ascertain this.

4.6.1 Qualitative Evaluations

In our evaluations, we determine how closely do the schedules computed using the
presented approach approximate the optimal schedule in terms of the �owspan. For
this we compared the schedules computed using our approach to the ones generated
by an ILP solver which solves the ILP formulation of the corresponding problem (cf.
Section 4.3.3).

The NW-PSP, an NP-hard problem, however cannot be optimally solved in a reason-
able time frame by an ILP solver if the problem instance is not small enough. Our
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(a) Tabu search v/s ILP solution (b) Execution time

(c) Impact of schedule compression

Figure 4.6: Evaluations Results

initial attempts to solve small instances with up to 50 �ows using CPLEX [63], a
state-of-the-art commercial ILP solver from IBM, required over three days to compute
optimal solution. However, we observed that the solver quickly generates a feasible
solution and improves it subsequently. In a few cases, the best solution computed by
CPLEX after a few minutes turned out to be the optimal solution, though it took
CPLEX a few hours to con�rm it. Hence, CPLEX provides primitives to terminate
the optimization problem early and obtain the best solution that has been computed
till that moment along with the optimality bounds for the solutions, i.e., how does
this solution potentially compare with the optimal solution. For our evaluations, we
set time-bounds on CPLEX to terminate after a reasonable amount of time and pro-
vide the best solution obtained till the moment. We compared this solution with the
schedule computed using our Tabu-search approach, in terms of the �owspan.

We executed our evaluations in 30 scenarios on topologies of various sizes (24�100
hosts, 5�20 switches generated using ER, RRG and BA models) with varying number
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of �ows (30�1500). We con�gured CPLEX with an upper time-bound of 300min. for
solving the ILP formulation for each instance of NW-PSP. Correspondingly, we also
computed schedules using our approach based on Tabu search for the same instance.
Our evaluations show that restricting the length of the Tabu list, x, to 10% of the
number of �ows being scheduled in the scenario and terminating the execution runs if
the previous 10 iterations did not yield an improvement in the solution, i.e., setting
y = 10, result in solutions with a �owspan reasonably close to the �owspan of the
solutions computed using ILP solvers with a time restriction.

For each scenario, we calculated the relative �owspan, i.e, the ratio of �owspan of
the schedule calculated by our Tabu search heuristic to the �owspan of the schedule
computed by the ILP formulation. Figure 4.6a shows a cumulative distribution of the
computed relative �owspans. Overall, in over 70% of our scenarios, the Tabu search
computes schedules with �owspan equal to or lower than the ones computed by a state-
of-the-art ILP solver (restricted to run for 300 minutes or less). In about a third of the
scenarios, the solutions computed by the Tabu search had a �owspan slightly higher
than the ones computed using the ILP. However, in these cases, the di�erence in the
�owspan of these schedules was less than 5%. Overall, the average relative �owspan
for the set of scenarios we evaluated was ≈ 97%. Thus, the Tabu search computes
solution which, on an average, have lower �owspan than the ones computed by an ILP
solver with a restriction on execution time.

4.6.2 Scalability Evaluations

To evaluate the scalability of our approach, we measured the execution times of our
algorithm (Tabu search along with schedule compression) while computing schedules for
varying number (10�1500) of �ows. We executed our evaluations on a multi-processor
machine (Intel(R) Xeon(R) CPU E3-1245 V2 @ 3.40GHz) with 2×4 cores and 16GB
of memory.

These evaluations are summarized in Figure 4.6b. Up to 50 �ows, the scheduling using
the Tabu search approach takes less than 10 secs., while beyond that the execution
times increase polynomially, as expected, with the number of �ows. Overall, the Tabu
search can compute schedules for about 1500 �ows in about 3.2 hrs. Moreover, our
evaluations suggest that the execution times for the Tabu search are mainly a polyno-
mial function of the number of �ows being scheduled. They do not depend on the size
of the underlying topology or the model on which the topology is based.

4.6.3 Impact of Schedule Compression

Compression of �ow schedules, as we presented them, is an important aspect of schedul-
ing in networks with IEEE 802.1Qbv enhancements. To evaluate the e�ectiveness of
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our approach, we measured the percentage reduction of gate opening events for time-
triggered tra�c in the schedules after compression.

For this evaluation, we computed �ow schedules in over 75 scenarios (varying sizes
and models of topologies, varying number of �ows etc.). The computed schedules
were subjected to our compression algorithm for reducing the number of gate opening
events. We not only used the presented Tabu search algorithm but also ILP solvers
for computing the initial schedules to show that our schedule compression algorithm
is equally e�ective on schedules computed using di�erent methods. The cumulative
distribution function for the reduction in number of gate opening events is shown in
Figure 4.6c.

Our evaluations show that the schedule compression algorithm, reduces the number of
gate-opening events by at least 12%. In certain scenarios, the achieved reduction goes
up to 42%. Overall, on an average, we observed a reduction of 24% for gate-opening
events in compressed schedules compared to the original schedules.

4.6.4 Evaluation Summary

In total, our evaluations show:

1. The presented Tabu search algorithm calculates near-optimal solutions for NW-
PSP with respect to minimizing the �owspan.

2. The execution times for the presented Tabu search algorithm depends on the
number of �ows being scheduled. Overall, our approach scales to scheduling over
1500 time-triggered �ows in about 3 hours.

3. The presented algorithm for schedule compression results in an average reduction
of 24% for gate-opening events/guard bands.

4.7 Discussion

4.7.1 Optimization Goal - Flowspan Minimization

Our approach to computation of transmission schedules for networks compliant with
programmable gating bunches up the scheduled tra�c towards the beginning of the
scheduling cycle. This increases the chances that packets from di�erent time-triggered
�ows are scheduled back-to-back resulting in a reduction in the number of gate driver
entries required for the computed schedule. Moreover, the proximity of the �ows in the
schedule makes the schedule compression algorithm, presented in Section 4.4.3, rather
e�ective.

An important e�ect of our optimization goal is the presence of larger continuous space
within a scheduling cycle for best-e�ort tra�c where these packets can be transmitted
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without interruption, i.e., these schedules may lead to formation of tra�c bursts. The
exact e�ects of such schedules on best-e�ort tra�c, in particular the congestion and
�ow control mechanisms of TCP, need to be studied as a part of future work.

4.7.2 Incremental Scheduling in Networks with IEEE 802.1Qbv

Enhancements

The IEEE 802.1Qbv standard speci�es mechanisms for runtime updates of the gating
schedules in the switches. In order to make the scheduling changes throughout the
network atomic in nature, the switches can be programmed with new schedules along
with a future timestamp specifying when they come into force. This way the schedule
changes can be synchronized throughout the network. However, the challenge remains
as to how to compute incremental schedules, i.e., ensure that a new time-triggered �ow
to be scheduled in the network does not in�uence the schedules of the existing �ows.

For this, we exploit an important property of the presented time-tabling algorithm.
The starting time of �ows, as computed by the algorithm, is in�uenced only by the
�ows preceding it in the totally ordered set generated using the sequencing algorithm.
The ones succeeding it play no role in determining its starting time. Thus, for adding
new time-triggered �ows in the schedule, the new �ows can be appended to the current
ordering of �ows and the time-tabling algorithm can be re-executed. While the new
sequence may not be an optimal one (in terms of the schedule �owspan), the schedules
for existing �ows will never be altered.

While the process of addition of �ows to an existing schedule is limited to re-execution
of the time-tabling algorithm, removal of �ows throws a bigger challenge. Removing
�ows and then re-executing the time-tabling algorithm will e�ect all the �ows which
appear in the sequence after the removed �ow. To avoid a�ecting other �ows, additional
gating entries can be added to close and re-open the gate appropriately during the time
when the packets of �ow are supposed to traverse a switch port. However, this will lead
to a gradual fragmentation of schedules on the lines of heap fragmentation in memory
management. Additional concepts required to overcome these e�ects are to be handled
in future work.

4.7.3 Extension for Unsynchronized Hosts

Our scheduling approach for networks compliant with IEEE 802.1Qbv standard as-
sumes that the clocks of all network participants are synchronized. However, with mi-
nor extensions this scheduling approach can also be applied in scenarios where clocks
of one or more end systems are not synchronized with the rest of the network. For
such end systems, the switches they are connected to act as a synchronizer taking over
the responsibility of synchronizing the transmission of the �ow into the network.
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This implies that the schedules of time-triggered �ows whose source hosts are not
synchronized with rest of the network are computed from the switch to which the source
hosts are connected to the destination of the �ow, i.e., the schedules are computed from
the second hop onwards. The lack of scheduling at the �rst hop means that the jitter
incurred at this hop may be as high as the base-period. Furthermore, to synchronize
the transmissions of the �ow at the second hop, the switch must dedicate one queue at
the corresponding output port to store the packets of the �ow till the time that they
can be transmitted over the second hop. Thus, the capacity of a switch to support
unsynchronized end systems acting as source hosts for time-triggered �ows is limited by
the number of queues available for usage at the output ports of the switch. However,
with respect to the scheduling algorithm itself, the fact that the end system is not
synchronized does not constitute a signi�cant limitation.

4.8 Related Work

Computing schedules for time-triggered tra�c in real-time networks, like TT-Ethernet,
Pro�NET, etc., is reasonably addressed in the literature. Given the complexity of the
problem, most approaches including the one that we have presented in this chapter
separate the scheduling problem from the routing aspect.

The pioneering work in this direction comes from Wilfried Steiner who used Satis�abil-
ity Modulo Theories (SMT) to model the scheduling problem of time-triggered �ows in
TT-Ethernet for computing a (any) feasible transmission schedule [54]. This approach
has also been extended to compute network transmission schedules along with task
schedules for the tasks executing on the end systems [64] [65]. TT-Ethernet is also a
layer-2 multi-hop switched Ethernet network architecture that uses an internal bu�er
to store packets belonging to time-triggered �ows which are then put into the queues
of the output ports at speci�ed times based on the �ows they belong to. Scholer et al.
present SMT based scheduling approaches for schedule computation in general time-
triggered networks [66]. However, these approaches cannot be used without further
adaptations for networks with the programmable gating mechanism which is oblivious
to the �ows to which the packets in the queues belong [67].

Hanzalek et al. modelled the scheduling problem in Pro�NET as a Resource Con-
strained Project Scheduling (RCPS) problem to minimize the makespan of the com-
puted schedule [68]. Dvo°ák et al. also mapped the concept of makespan minimiza-
tion for TTEthernet [69]. However, these approaches are speci�cally directed towards
Pro�NET, TTEthernet etc., and does not discuss with the problems like guard bands
which are prevalent in the gating mechanisms speci�ed under the IEEE 802.1Qbv
mechanism.

Recently, a few approaches which combinedly explore the routing and scheduling in
time-triggered networks have been published. Schweissguth et al. model the combined
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routing and scheduling problem using ILP and then leverage ILP solvers to compute
routes and schedules for the time-triggered �ow [70]. Falk et al. presented ILP formu-
lations for computing routes and schedules simultaneously and determined the factors
which directly in�uence the runtime of the ILP solver [71]. Mahfuzi et al. have taken
this problem a step further and integrated the stability criterion of the cyber-physical
systems relying on the time-triggered �ows into the problem [72]. However, neither of
these approaches scale well for larger problem scenarios, i.e., network topologies with
a large number of �ows.

We also present related work for computation of schedules considering other classes of
tra�c in time-triggered networks. Maxim et al. [73] and Zhao et al. [74] investigate the
e�ect of schedules for time-triggered tra�c on other tra�c classes in the networks with
IEEE 802.1Qbv extensions and TT-Ethernet, respectively. In [75], Steiner proposed
creation of porous schedules for reserving enough bandwidth of other tra�c classes in
TT-Ethernet, thus, resulting in networks for supporting systems with mixed criticality.
Further, [76] proposes a Tabu search algorithm for adapting schedules of time-triggered
tra�c such that deadlines for di�erent tra�c classes can be satis�ed. Specht et al.
introduce an asynchronous tra�c class in the network and by means of an urgency based
scheduler provide low and predictable worst-case delays at high link utilization [77].

Our approach along with [30] are among the �rst approaches which deal with the com-
putation of transmission schedules speci�cally for the gating mechanisms introduced in
the IEEE 802.1Qbv standard. Recent work by Oliver et al. uses �rst order array the-
ory encoding for formulating constraints for an SMT model describing the scheduling
problem [78]. While most approaches look for �nding a feasible solution for deployment
in the network, our approach aims to optimize the makespan of the schedule with a
goal to reduce bandwidth wastage under guard bands by reducing the number of �gate-
open� events for scheduled tra�c in the schedule. Further, we also look to improve the
scalability of our approach for larger scenarios by means of our Tabu search heuristic.

4.9 Summary

In this chapter, we presented the problem of scheduling time-triggered tra�c in net-
works compliant with the recently standardized IEEE extensions for handling scheduled
tra�c in Ethernet networks. We modelled this problem as the No-wait Packet Schedul-
ing Problem (NW-PSP) which can be reduced from a No-wait Job-shop Scheduling
Problem (NW-JSP), a well-known problem from the �eld of operations research. Our
contributions include an e�cient meta-heuristic in the form of a Tabu search algorithm
to compute schedules by solving the corresponding NW-PSP instance. To further re-
duce the wastage of bandwidth due to guard bands stemming from the usage of the
gating mechanism, we presented a specialised compression algorithm that compresses
the schedules to reduce the instances of guard bands in schedules. We also discuss
extensions of our approach to incrementally add time-triggered �ows into the network
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and the usage of the presented approach in networks where one or more end systems
are not synchronized.
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CHAPTER 5

ROUTING IN NETWORKS WITH IEEE 802.1QBV

EXTENSIONS

5.1 Introduction

On account of the high time complexity for computing per-hop transmission sched-
ules, we separate the scheduling of time-triggered �ows from their routing in networks
equipped with extensions from IEEE 802.1Qbv standard. Our approach to the compu-
tation of the gating schedules for a set of time-triggered �ows require that the routes
of the �ows are provided in advance. However, given that the routing of time-triggered
�ows directly in�uences the computed schedules, the question arises as to how to route
time-triggered �ows such that it o�ers the scheduling algorithm the best chance to
compute a feasible schedule, if one exists.

Time-triggered �ows can be routed using the same of-the-shelf algorithms that are also
used for routing best-e�ort tra�c, like shortest path routing or equal-cost multipathing
(ECMP), which minimize the number of hops over which the tra�c is routed. While
fewer number of hops may translate to lower end-to-end latencies for time-triggered
�ows, it does not re�ect their schedulability in the network. The possibility of explicitly
controlling the routing of tra�c using software-de�ned networking protocols like Open-
Flow (cf. Section 2.1) or the amendments speci�ed in the IEEE 802.1Qca standards
enable design of routing algorithms which also incorporate the schedulability aspect of
time-triggered �ows.

In this chapter, we explore the impact of routing algorithms on the schedulability of
time-triggered �ows which we express in terms of the slackness in the transmission
schedule. In particular, we show that routing of time-triggered �ows does indeed
a�ect its schedulability and that the algorithms which use number of hops as the only
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metric for routing the tra�c are not suitable for time-triggered �ows. Our scienti�c
contribution is the identi�cation of parameters that a routing algorithm must consider
to have an impact on the slack of the subsequently computed schedules for time-
triggered �ows. Moreover, we use these parameters to design ILP-based algorithms for
routing time-triggered �ows, and, thus, improve their schedulability. Our evaluations
show that these routing algorithms improve the slack in the schedules by up to 60%
and 30% in comparison to our benchmark algorithms the shortest path routing and
equal-cost multipathing, respectively.

This chapter is structured as follows. We present the system model and identify met-
rics required to be considered with respect to the routing of time-triggered �ows in
Section 5.2. Section 5.3 presents the ILP-based routing algorithms for time-triggered
�ows based on the identi�ed metrics. We discuss the evaluations of our algorithms and
present the related work in Section 5.4 and 5.5 respectively before concluding.

5.2 System Model & Problem Statement

5.2.1 System Model

As we focus on the routing algorithms for time-triggered �ows in networks compliant
with the IEEE 802.1Qbv standard, the system model in this chapter is similar to the
one presented in Section 4.2. It consists of switches equipped with the programmable
gating mechanism (cf. Section 2.2.1), end-systems, and a centralized network controller.
The end systems function as the sources and sinks of time-triggered tra�c, while the
network controller is responsible for computing the routes and schedules for the tra�c
and programming the underlying switches accordingly. We assume that all the nodes
and the switches in the network are precisely synchronized and that the hosts can
adhere with the computed schedules reasonably. Time-triggered �ows are modelled
as periodic �ows with constant time-periods and payload size. Additionally, the time-
periods of all time-triggered �ows to be scheduled are restricted to be integral multiples
of the base-period, tbp.

To implement the results of the routing algorithm, we require that the switches provide
programmatic interfaces (e.g. OpenFlow [14] or mechanisms from IEEE 802.1Qca [27])
which enable routing of time-triggered �ows over arbitrary network paths.

5.2.2 Problem Statement

To concretely specify the routing problem we have at hand with respect to time-
triggered �ows, we need to �rst understand the impact of routing on the subsequent
computation of schedules for such �ows. To study this impact, we need metrics by
means of which di�erent transmission schedules for a given set of time-triggered �ows
can be compared.
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Comparison of Transmission Schedules

In Chapter 4, we formulated the No-wait Packet Scheduling Problem (NW-PSP)
to compute gating schedules for time-triggered �ows in networks compliant with
IEEE 802.1Qbv standard and mapped it to the No-wait Job-shop Scheduling (NW-
JSP), a problem in operations research dealing with the computation of schedules for
manufacturing jobs in a shop�oor. NW-PSP is an optimization problem that deals with
minimization of �owspan, Tfs , of transmission schedules, where the �owspan of a sched-
ule is the total time required in a scheduling cycle for handling all the time-triggered
�ows in the network. The schedule itself is of the length equalling the base-period, tbp,
and is cyclic, i.e., it is repeated from beginning after it ends.

The �owspan of the schedule for a given set of time-triggered �ows in a network is criti-
cal with respect to their schedulability. Here, schedulability implies that the computed
schedule satis�es the timing constraints of all the time-triggered �ows in the network.
For this, it is necessary that the �owspan is less than or equal to the length of the
schedule, i.e., Tfs ≤ Tbp . If the �owspan exceeds the length of the schedule, then the
tra�c from a given scheduling cycle may interfere with the tra�c from the subsequent
cycle leading to violations of the timing guarantees. Furthermore, the �owspan of the
schedule re�ects the capacity of the network to accommodate additional time-triggered
�ows, i.e., the slack in the schedule. The lower the �owspan, higher is the slack, and
higher is the quantum of time-triggered tra�c that can be additionally accommodated
in the network. Thus, if multiple transmission schedules are available for a given set of
time-triggered �ows in a network topology, the one with the lowest �owspan is prefer-
able. In the following, we use �owspan as a criterion to determine the �quality� of the
transmission schedules for a given set of time-triggered �ows in a network.

While the concept of �owspan lends itself for determining the quality of schedules com-
puted by the formulation of an NW-PSP instance, it is not very meaningful for other
approaches computing gating schedules. The approaches using Satis�ability Modulo
Theories (SMT) compute schedules based on the concept of hypercycles, where the
length of schedules are equal to the least common multiple of the time-periods of all
the time-triggered �ows to be scheduled. These approaches do not constrain the trans-
mission period of the �ows in any way, and distribute the scheduled tra�c throughout
the length of the schedule in compliance with their timing constraints. As these ap-
proaches do not strive to tightly bunch the time-triggered tra�c at the beginning of
a scheduling cycle, it is hard to compare multiple feasible schedules or determine the
available slack in the schedule for additional time-triggered tra�c to be added. Given
the widely varying approaches to compute transmission schedules, it is a hard task
to identify a universal metric that is valid for all scheduling approaches to compare
schedules. We, nonetheless, choose �owspan as a metric for comparing schedules for
this work, and leave the task of identifying a universal metric for schedule comparison
as future work.
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Impact of Routing on Schedulability of Time-triggered Flows

As production processes dictate the sequence of operations composing the manufactur-
ing jobs in NW-JSP, reordering or modifying the sequence is usually not feasible even
if it may lead to better schedules. In contrast, for NW-PSP the constituent forwarding
operations of the �ows can be modi�ed to a certain extent, especially, if it results in
a lower �owspan. In other words, the routes of time-triggered �ows may be modi�ed
to minimize the �owspan of the resulting transmission schedule. So, we analyse the
impact of routes serving as an input parameter to the NW-PSP on the �owspan of the
resulting schedules.

The standard algorithms (like shortest path �rst, equal cost multipathing etc.) opti-
mize the number of hops over which the tra�c is routed. In terms of the NW-PSP
formulation, the �ows to be scheduled are composed of fewest possible forwarding
operations. However, �ows with fewer forwarding operations alone do not guarantee
an optimal �owspan. In NW-PSP, the �owspan is also dependent on the number of
�ows with con�icting forwarding operations, i.e., the forwarding operations belonging
to di�erent �ows that must be processed on the same egress ports of the switches, and
the maximal duration during which any of the switch ports is kept occupied. Hence,
time-triggered �ows must be routed to have fewer �ows with overlapping paths, while
also minimizing the aggregated amount of time-triggered tra�c that any switch port
should transmit. For this purpose, we introduce a parameter, Maximum Scheduled
Tra�c Load (MSTL), for capturing the e�ects of distribution of scheduled tra�c over
the network. We de�ne Maximum Scheduled Tra�c Load (MSTL) as the highest quan-
tum of scheduled tra�c that is transmitted by any of the switch port in the network
per cycle of the transmission schedule. MSTL is directly in�uenced by the routing
algorithm, for instance, routing all time-triggered tra�c over any single link leads to a
higher value of MSTL, compared to the case where this tra�c is distributed throughout
the network.

To determine the e�cacy of our metric, we conducted preliminary evaluations to de-
termine the relationship between MSTL stemming from routing of time-triggered �ows
and the �owspan of the resulting schedule. In our evaluations, we observed that the
MSTL on account of routing time-triggered �ows and the �owspan of the resulting
schedule are directly related. Figure 5.1 shows the variance of MSTL (using shortest
path routing (SP) and equal-cost multi-pathing (ECMP)), and the resulting schedule
�owspan against a varying number of time-triggered �ows (200�1000), each sending
packets of varying sizes (300�1500 bytes) per scheduling cycle, in an Erd®s-Rényi (ER)
topology [60] with 10 switches and 50 hosts. The �gure clearly shows similar behaviour
for the schedule �owspan and the corresponding MSTL.

We argue that to have schedules with lower �owspan, it is necessary that the preceding
routing stage routes time-triggered �ows accounting for the corresponding MSTL. In
the following, we present ILP-based algorithms that explicitly minimize the MSTL
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Figure 5.1: MSTL vs Flowspan for Shortest Path Routing (SP) and Equal Cost Mul-
tipathing (ECMP)

while routing time-triggered �ows. Furthermore, given that there are di�erent methods
to compute gating schedules for IEEE 802.1Qbv compliant networks, we also seek to
generalize this routing approach to make it compatible with the subsequently used
scheduling method.

5.3 ILP Based Routing Algorithms

In this section, we present our ILP-based algorithms for determining routes for time-
triggered �ows.

5.3.1 Terminologies

We denote the network as a directed graph, G ≡ (V,E), where V is the set
of all nodes (hosts and switches) in the network, while E ⊆ V × V is the set
of edges connecting a pair of nodes. Time-triggered �ow is denoted as a tuple,
f ≡ (srcf , dstf , sizef , periodf ), which implies that the source host, srcf , sends pack-
ets with a total aggregated size of sizef bytes to the destination host(s), dstf , every
periodf time units.

The length of the schedule is denoted as Tcycle and is based on the scheduling approach
to be used. For schedule computation using NW-PSP, Tcycle = Tbp, while for the SMT-
based approaches, it is equal to the least common multiple of the time-periods of all
the time-triggered �ows being scheduled.
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5.3.2 Routing Heuristics

We mainly present two ILP-based routing approaches, the �rst optimizes the routes
of the time-triggered tra�c based on the resulting MSTL only, while the second one
additionally considers the number of hops over which the �ows are routed.

MSTL Based Routing

In this heuristic, we solely base the routing decision on the resulting MSTL.

The inputs for this ILP are:

(a) Network topology, G,

(b) Set of time-triggered �ows to be scheduled, F ≡ {f1, f2, . . . fn}.

The variables used for this ILP are:

(a) Route allocation, Routes ≡ {ri,j} ∀i ∈ F, j ∈ E.
Here, ri,j = 1, if �ow i is routed over link j, else 0. The values of these variables,
basically, determine the routes for the �ows,

(b) Maximum scheduled tra�c load, MSTL. This variable is used in the objective
function. It must be noted that we do not set a value for the MSTL upfront,
instead we allow the solver to route the �ows while minimizing it,

(c) Destination counters, DC ≡ {di,j}, ∀i ∈ F, j ∈ E.
Here, dci,j = number of destinations of �ow i reachable over link j, if �ow i is
routed over link j, else 0. These are auxiliary variables for handling multicast
time-triggered �ows.

The objective of this ILP is, thus, to minimize MSTL, subject to:

(a) The route for each �ow starts at its source and ends at its destination(s). i.e.,
the number of destinations reachable over the outgoing links of the source host is
equal to the number of destinations of the �ow, while the number of destinations
reachable over the incoming links of the destination hosts is 1. For all the other
nodes in graph G, the sum of destinations reachable over incoming links is equal
to the sum of destinations reachable over outgoing links. The below constraints
are applicable for all �ows, i.e., ∀i ∈ F .∑

j ∈ in(srci)

dci,j = 0
∑

j ∈ out(srci)

dci,j = |dst i| (5.1)

∑
j ∈ in(n)

dci,j = 1
∑

j ∈ out(n)

dci,j = 0 ∀n ∈ dsti (5.2)
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∑
j ∈ in(n)

dci,j =
∑

j ∈ out(n)

dci,j ∀n ∈ V \ ({srci} ∪ dst i) (5.3)

Here, the in() and out() functions return the incoming edges and outgoing edges
of the node passed as parameter, respectively.

(b) The �ows must be routed such that no switch port is transmitting more scheduled
tra�c than stipulated by MSTL (which is being minimized in the objective).∑

∀i∈F

ri,j · sizei ·
Tcycle
period i

≤ MSTL ∀ j ∈ E (5.4)

Though NW-PSP restricts the periods of the �ows to be integral multiples of Tbp ,
in practice, the scheduling algorithm schedules all the �ows assuming that their
period is equal to Tbp . Thus, for NW-PSP this constraint simpli�es to consider
the size of the �ow only, as Tcycle = Tbp for an NW-PSP instance. Nonetheless,
we account for the time-periods of the �ows to enable the usage of this ILP
formulation for the SMT-based scheduling approaches also.

With minor modi�cations to the constant terms in the constraint, it can be
extended to also account for the di�erences in the data-rates of di�erent links in
the network.

(c) As an auxiliary constraint, it is required that the routing variables are inline with
the destination counter. These variables must be related as follows.

ri,j · |dst i| ≥ dci,j ∀ i ∈ F , ∀ j ∈ E (5.5)

After solving this ILP, the routes for the time-triggered �ows can be derived from the
values of the ILP variable, Routes. It must be noted that the computed routes for
the �ows may have loops resulting from links that handle scheduled tra�c much lower
than the MSTL. These loops can be removed by means of post processing the routes or
adding constraints to the objective function to constrain the solver from routing �ows
over paths with loops. However, our evaluations show that such modi�cations to the
ILP lead to a signi�cant increase in the execution runtimes. Hence, we chose to post
process the ILP solution to remove any loops in the �nal routes. The post processing
of the solution in no way alters the resulting MSTL, as it is already minimized by the
solver.

MSTL+Hops Based Routing

Routing of time-triggered tra�c minimizing the MSTL only, may result in some �ows
being routed over longer paths. In some cases, this may lead to an increase in the
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�owspan, as a few �ows in the NW-PSP instance would now have an increased number
of forwarding operations due to the longer routing of the �ows. Hence, we now extend
the aforementioned ILP to compute routes for time-triggered tra�c, while optimizing
the number of hops along with the resulting MSTL.

For this, we modify the objective of the aforementioned ILP as follows.

Minimize:

MSTL

1 +
∑
∀i∈F

sizei
+

∑
∀i∈F

∑
∀j ∈ E

ri,j

1 + (|F | · |E|)
(5.6)

The �rst term of the objective is, basically, minimizing the MSTL, while the second
term minimizes the cumulative number of hops over which all the �ows are routed.
Both these terms are normalized to limit their contribution to the objective function
to less than 1, so that the ILP solver does not prioritize one over the other.

Our evaluations show that the presented algorithms do, indeed, reduce the �owspan
for the schedules computed using NW-PSP.

5.3.3 Extension for Incremental Scheduling

We have so far considered the problem of routing time-triggered �ows when their
speci�cations are known in advance, i.e., the static case. In the dynamic scenario, the
routes of the already scheduled �ows cannot be altered while computing the routes for
the new �ows.

The presented ILP-based formulations can be extended for incremental routing of time-
triggered �ows with a minor modi�cation to the constraint 5.4. The modi�ed constraint
considers the load of the scheduled tra�c already routed over each of the link. The
modi�cation mainly includes addition of a constant term to the constraint, and hence,
does not a�ect the time complexity of the problem.

∑
∀i∈F

ri,j · sizei ·
Tcycle
period i

+ loadj ≤ MSTL ∀ j ∈ E (5.7)

With this modi�cation, the ILP formulations can route multiple �ows in a batch while
considering the routes of all the previously scheduled �ows. However, it must be noted
that the resulting MSTL on account of the routing may be sub-optimal, primarily due
to the inability to modify the routes of the �ows already scheduled.
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5.4 Evaluations

In this section, we present the results of the evaluations of the ILP-based routing
algorithms with respect to their impact in improving the transmission schedules and
their scalability.

5.4.1 Impact on Scheduling

We evaluated the impact of these routing algorithms on the computed schedules with
two scheduling approaches, viz., by formulating an NW-PSP instance and by using
SMT-based implementation from [30].

Scheduling with NW-PSP

To evaluate the impact of the routing algorithms on the subsequent transmission
scheduling, we routed a varying number (200�1000) of time-triggered �ows in a random
network topology consisting of 50 hosts and 10 switches, generated using the Erd®s-
Rényi model, using four di�erent routing schemes�Shortest path routing, Equal Cost
Multi-Pathing (ECMP), MSTL based routing, and MSTL+Hops based routing. In the
next step, we computed the transmission schedules for the �ows using NW-PSP and
the routes computed in the previous step with the di�erent algorithms. The results of
this evaluation are summarized in Figure 5.2a.

The results show that with an increase in the number of �ows the schedule �owspan
increases rapidly in the case of shortest path routing. This is because the shortest path
routing is agnostic to the load of scheduled tra�c while computing routes. ECMP
fares much better with the increase in �owspan being gradual, as it tries to randomly
distribute the load of scheduled tra�c throughout the network. Further, MSTL-based
routing typically yields better schedules compared to routing using ECMP, but as it
may route �ows over longer paths, occasionally the �owspan may be higher than that
with ECMP. In all the cases, MSTL+Hops based routing outperforms all the other
routing schemes, and yield schedules that have on an average 38% and 20% lower
�owspan compared to the shortest path routing and ECMP, respectively.

We also executed the presented ILP-based routing algorithms for computing routes for
time-triggered �ows in 24 di�erent scenarios (varying number of �ows on three topolo-
gies of di�ering sizes). The subsequently computed schedules were then compared
with the ones resulting from the shortest path routing and ECMP. Figure 5.2b and
Figure 5.2c show the cumulative distributions of �owspan reduction compared to the
shortest path routing and ECMP, respectively. The results show that while the MSTL-
based approach, in general, improves quality of schedules, in a few cases, it ends up
increasing the �owspan compared to the o�-the-shelf algorithms. Overall, such cases
were limited to less than 10% and 30% with shortest path routing and ECMP as
references, respectively. However, the MSTL+Hops based approach always yields an
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(a) Routing algorithms vs �owspan

(b) Flowspan reduction compared to
SP

(c) Flowspan reduction compared to
ECMP

(d) Runtime vs No. of Flows (e) Runtime vs No. of Links

Figure 5.2: Evaluations Results for the ILP formulations presented in Section 5.3
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improvement in �owspans, with schedule �owspans reduced by up to 60% and 30%

compared to shortest path routing and ECMP, respectively.

Scheduling using SMT-Based Approach

As already mentioned, the SMT-based approaches aim to �nd a feasible schedule for a
set of time-triggered �ows given their routes. As they do not strive to bunch the tra�c
towards the start of the scheduling cycle, evaluating the quality of schedules that these
approaches compute using �owspan as a metric is meaningless. Hence, we improvised
an evaluation strategy to determine the quantum of time-triggered tra�c that can
be scheduled into the network [38]. For this, we executed the scheduling algorithm
repeatedly increasing the number of time-triggered �ows given as input with each
iteration, till the scheduling algorithm could no longer compute a feasible schedule, i.e.,
till the network was saturated with time-triggered �ows. However, the problem with
this strategy was that as the number of �ows increased, the runtime of the scheduling
algorithm increased exponentially. To avoid this problem, we modi�ed our approach
to determine the saturation point of the network with respect to time-triggered �ows
by means of incremental scheduling, i.e., we schedule new batches of �ows into the
network without modifying the schedules of the old �ows till we are no more able to
add further �ows. While this evaluation method does not accurately determine the
so-called saturation point of the network with respect to the scheduled tra�c, we can
still compare the performance of the di�erent routing algorithms with respect to the
yielded schedules.

We evaluated the saturation point for an Erd®s-Rényi network with 10 switches and 30
hosts by incrementally adding 5 �ows in each iteration. Each �ow transmits packets of
sizes varying between 300�1500 bytes per scheduling cycle. For the sake of simpli�ca-
tion, we used the same time-period (100 time units) for all �ows. With shortest path
routing the scheduling algorithm could not schedule more than 20 �ows. This is un-
derstandably because the bottleneck link is highly utilized to be able to accommodate
further bandwidth for new time-triggered �ows without a�ecting the already sched-
uled �ows. ECMP, on the other hand, could accommodate 70 �ows, while the MSTL-
based approach could manage 100 �ows. However, like in the NW-PSP scheduling,
MSTL+Hops based approach managed to have the highest number of time-triggered
�ows scheduled into the network with a total of 110 �ows.

From these evaluations, we conclude that using our routing approaches will improve
the schedulability for SMT-based approaches as well.

5.4.2 Scalability Evaluations

The runtimes for the ILP-based routing algorithms that we presented in this chapter
depend on the number of �ows which are to be routed and the size of the topology
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(in terms of the number of links). To determine the scalability of the algorithms with
respect to the number of �ows, we executed the algorithms for computing routes for
varying number of �ows (200�1000) in an Erd®s-Rényi network with 50 hosts and 10
switches (66 links). As shown in Figure 5.2d, the runtimes for the MSTL+Hops based
algorithm increases steeply with the number of �ows being scheduled, with approxi-
mately 3 hours of runtime for routing 1000 �ows. In contrast, the runtimes for the
MSTL-based approach increase gradually with the number of �ows. The runtime for
routing 1000 time-triggered �ows using this approach is approximately 11 minutes.

We also evaluated the scalability of the algorithms with respect to the size of the
topology. We routed 1000 �ows on networks of di�erent sizes. Figure 5.2e summarizes
the results of this evaluation. Similar to the earlier evaluations, the runtimes for
MSTL+Hops based routing algorithm increase rapidly with the number of links. The
runtimes increase from about 3 hours to 63 hours when the size of topology is increased
from 66 links to 270 links. The MSTL-based routing can, however, route 1000 �ows in
a network topology with 270 links in approximately 1 hour.

5.5 Related Work

Routing in complex networks is a very old and well-researched problem. The initial
solutions to the routing problem in computer networks, minimizing the number of hops,
were already published in the 1960s [79] [80]. In modern Ethernet networks, routing
is achieved by means of a spanning tree of the topology created using the di�erent
variants of the spanning tree protocols speci�ed in the IEEE 802.1Q [81] and IEEE
802.1D standards [82]. The fact that routing over shortest path between the source
and the destination does not always provide quality-of-service (QoS) guarantees to the
�ows led to the development of several other approaches to integrate QoS metrics into
routing. The emergence of SDN paradigm has further facilitated the implementation
of centralized QoS aware routing algorithms [15]. Guck et al. present a detailed survey
on the various approaches to integrate QoS metrics into routing algorithms [83].

The Time-sensitive Networking (TSN) Task Group (TG) has explicitly consid-
ered routing problem in the extensions published for time-sensitive networks. The
IEEE 802.1Qca [27] is a TSN extension which provides explicit control of the routes
for time-sensitive data streams, while the IEEE 802.1CB [47] speci�es mechanisms for
routing the time-sensitive data streams over redundant paths and elimination of dupli-
cate frames which result from such redundant forwarding. However, these standards
do not specify any algorithms for computing routes for time-sensitive data streams.

The TSN also proposes extensions for accommodating shaped tra�c, e.g., the Audio
Video Bridging (AVB) data streams, in addition to mechanisms for scheduled tra�c
in Ethernet networks. The latency guarantees demanded by these data streams are
usually slightly relaxed in comparison to the end-to-end latency and jitter bounds
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required for the scheduled tra�c. In TSN, shaped tra�c can be handled using the
credit based shaper speci�ed in the IEEE 802.1Qav [44]. The routing of these data
streams must, however, consider the routes and schedules of the time-triggered data
streams. On links with high utilization for scheduled tra�c, these streams might not
get enough bandwidth despite having su�cient credit. Laursen et al. present a greedy
approach for routing these data streams such that the latency these streams experience
is minimized considering the intervening scheduled tra�c [84].

Most approaches for handling scheduled tra�c in time-sensitive networks consider only
the scheduling aspect, while a few recent approaches have integrated routing along
with scheduling (cf. Section 4.8). A noteworthy contribution in this direction is from
Gavrilut et al. who present algorithms for computing fault tolerant routes for an
asynchronous tra�c class scheduled using an urgency based scheduler (cf. [77]) in TSN
using redundant links and bridges [85].

For approaches separating the scheduling of time-triggered �ows from its routing, the
impact the routes of the �ows have on the computed schedules is an important aspect.
Kentis et al. hold the port congestion measured in terms of number of �ows as the
single most important factor in�uencing the schedules [86]. Along with our work, this
contribution is among the �rst ones to discuss the impact of routing on the schedula-
bility in time-sensitive networks. We, however, took this a step ahead and developed
routing algorithms based on this e�ect.

5.6 Summary

Computing appropriate transmission schedules is an important aspect for providing
real-time guarantees for the scheduled tra�c in the IEEE 802.1Qbv networks. As a
consequence of the high time-complexity of the scheduling problem, we separate it
from the corresponding routing problem and solve both of them disjointly. However,
the routing of time-triggered �ows directly a�ects the computation of their transmission
schedules. In this chapter, we discussed the impact that routing of time-triggered tra�c
has on the quality of the schedules computed and the need for specialized algorithms for
routing such tra�c. We identi�ed parameters, in addition to the number of hops, which
must be considered by routing algorithms while computing routes for time-triggered
�ows. We also proposed two ILP-based routing algorithms based on our �ndings for
this purpose. Our evaluations show that specialized routing algorithms can improve
the quality of schedules by up to 30% and 60% compared to the shortest path routing
and equal cost multipathing, respectively.
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CHAPTER 6

JOINT SCHEDULING AND ROUTING USING SDN

6.1 Introduction

So far we have addressed the scheduling and routing problems for time-triggered
�ows in networks equipped with the programmable gating mechanisms speci�ed in
the IEEE 802.1Qbv standard. While these extensions provide primitives for enforcing
transmission schedules in the network, they also increase the complexity, and thus, the
costs of the switching hardware. An interesting question to pose here is to what kind
of guarantees can be provided to the scheduled tra�c in absence of these enhance-
ments. After all, not all applications relying on time-triggered tra�c demand zero
jitter for communication. Furthermore, it would su�ce in some networks, e.g., smaller
shop-�oors with fewer real-time applications using the time-triggered communication
paradigm, if only a relatively smaller quantum of scheduled tra�c can be handled in
comparison to what is theoretically achievable using additional hardware enhancements
like the programmable gating mechanisms.

In this chapter, we look at networks which are not equipped with these specialized ex-
tensions, i.e., per-hop transmission schedules cannot be enforced for the time-triggered
tra�c as the switches merely act as delay elements. It is possible in such networks
to schedule the transmissions of time-triggered tra�c at their respective source hosts
provided their clocks are synchronized. The IEEE 1588 Precision Time Protocol or the
IEEE 802.1AS, the standard dealing with clock synchronization within the umbrella of
Time-sensitive Networking, which provide precision in the range of nanoseconds could
be used for this purpose. However, the algorithms for computation of schedules and
routes for time-triggered �ows in such networks would vary substantially from the al-
gorithms presented in Chapter 4 and 5. The challenge here is to model the e�ects
of the best-e�ort tra�c in transit on the traversal of the time-triggered �ows through
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the network. Given the lack of specialized hardware, the temporal isolation between
scheduled tra�c and other classes of tra�c, achieved by means of guard bands (cf.
Section 2.2.1), is not feasible.

In this chapter, we present Time-sensitive Software-de�ned Network (TSSDN), an
SDN-based architecture, for handling scheduled tra�c in Ethernet networks using net-
work elements which are not equipped with any specialized enhancements for handling
scheduled tra�c. By means of transmission scheduling at the source hosts and pri-
oritizing the time-triggered tra�c within the network while appropriately routing it,
TSSDN looks to bound the non-deterministic queuing delays that the packets belonging
to time-triggered �ows incur. It must be noted that the lack of mechanisms to pre-
cisely schedule the transmissions at the switches means that TSSDN cannot completely
eliminate the e�ects of other classes of tra�c on the scheduled tra�c, nonetheless, it
manages to keep the jitter reasonably low. We also introduce the scheduling problem
in TSSDN and propose various Integer Linear Programming (ILP) formulations for
computing routes and transmission schedules for time-triggered �ows. In particular,
we present formulations which compute optimal solution along with faster heuristics.
In contrast to our solutions for the scheduling and routing of time-triggered �ows in
networks with IEEE 802.1Qbv extensions, we present integrated solutions which jointly
compute the schedules and routes for such �ows in TSSDN.

Our evaluations show that the presented ILP formulations can generate transmission
schedules for networks of realistic sizes within seconds. Through a proof-of-concept
implementation, we show that adherence to the computed schedules using user-space
packet processing frameworks does indeed result in bounded network delay and jitter.
We observed end-to-end latencies of ≤ 14µs with ultra low jitter (≤ 7µs) on our
benchmark topology created using commodity SDN switches.

This chapter is structured as follows. We present the system model of TSSDN and
the concrete problem statement with respect to the transmission scheduling and rout-
ing of time-triggered �ows in TSSDN in Section 6.2. The ILP based solutions to
computing transmission schedules and routes for time-triggered �ows are presented in
Section 6.3. We discuss issues like the network utilization with respect to scheduled
tra�c in Section 6.4. The evaluations and the related work are presented in Section 6.5
and Section 6.6, respectively.

6.2 System Model & Problem Statement

6.2.1 System Model

In this section, we describe the system model for TSSDN by specifying the changes
and the additional assumptions to the uni�ed system model presented in Chapter 3.
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Figure 6.1: Architecture of Time-sensitive Software-de�ned Network (TSSDN). Net-
work controller routing �ows F1 & F2 and allocating them slots T1 & T2,
respectively.

The architecture of TSSDN is shown in Figure 6.1. The data plane in TSSDN consists of
commodity SDN switches, cut-through or store-and-forward, and end systems. TSSDN
relies on in-network prioritization to separate scheduled tra�c from the best-e�ort
tra�c. To this end, the packets belonging to the time-triggered �ows are tagged by the
source host as high priority tra�c using for instance the Priority Code Point (PCP) in
VLAN tags or the Di�erentiated Services Code Point (DSCP) in the IP header. Thus,
the scheduled tra�c is prioritized over the low priority best-e�ort tra�c with respect
to forwarding. It must be noted that the tagging of scheduled tra�c in TSSDN is to
explicitly prioritize it in the network, in contrast to simply directing the concerned
packets to the queues speci�cally reserved for scheduled tra�c (which may be di�erent
from the queues with highest priority) in networks with the IEEE 802.1Qbv extensions.
Another peculiarity of TSSDN is that only the clocks of the end systems need to be
synchronized. The switches themselves may be left unsynchronized as they are not
equipped with the gating mechanism which can bene�t from synchronized clocks.

The control plane of TSSDN is similar to the one mentioned in the uni�ed system
model. The control plane is centralized and is responsible for computing schedules and
routes for the time-triggered �ows as shown in Figure 6.1. The routes are programmed
in the switches using OpenFlow, the SDN south-bound protocol. For communicating
the schedule information to the end systems, the same protocol can be extended, or
alternatively, a dedicated protocol can be developed.

We add additional restrictions to the time-triggered �ows described in the uni�ed sys-
tem model. We require that the source hosts of time-triggered �ows transmit applica-
tion layer data units encapsulated in a single UDP packet (size limited by the network
MTU) based on the computed transmission schedule. Like in Chapter 4, the use of
cyclic scheduling approach in TSSDN requires all �ows to have time-periods which are
integral multiples of the base-period, tbp. The base-period indicates the length of the
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Figure 6.2: Transmission schedules in TSSDN

transmission schedule and the minimum time-period that time-triggered �ows in the
network may have. For schedule adherence by the source hosts, we again fall back to
our solution using Intel's DPDK, presented in Section 4.5.

6.2.2 Problem Statement

The goal of TSSDN is to achieve deterministic network behavior with bounds on
network delay and jitter for time-triggered tra�c to support real-time communica-
tion. Therefore, it is essential for TSSDN to bound the non-deterministic queuing
delay for time-triggered tra�c. A radical approach is to altogether eliminate the non-
deterministic queuing delays in the switches on the path from the source host to the
destination host. Queuing occurs in switches when packets from multiple input ports
attempt to transmit over the same output port simultaneously. For instance, in the
topology shown in Figure 4.2, simultaneous transmissions of packets belonging to �ows
Fi : Ai → Bi; i ∈ [1 . . . 5] will result in queuing at the output port of switch S1. In such
cases, the network delay for these packets would depend on the length of queues they
encounter, i.e., the �ows are a�ected by jitter. Queuing can be eliminated if no two
inputs ports contend for transmitting over the same output port, i.e., the source host
initiates transmission only when the entire network path over which the �ow traverses
is exclusively reserved for it. This implies that whenever packets belonging to time-
triggered �ows arrive at a switch, the ports on which they are to be forwarded are free
and the packets are forwarded with zero queuing delay. For this, the scheduling algo-
rithms in TSSDN are formulated to guarantee that no high-priority packets interfere
and delay each other.

TSSDN implements a time division multiple access (TDMA) scheme, where every time-
triggered �ow has well-de�ned time-slots allocated by the network controller during
which its source can transmit. Thus, the transmission schedule is modelled as a cyclic
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schedule of duration equalling the base-period, tbp, as shown in Figure 6.2. It is divided
into smaller time-slots, numbered from 0 to tmax, each wide enough for an MTU-
sized packet to travel across the longest network path. Note that the slot length is
bounded as the longest path in TSSDN is restricted to 7 hops. The network con-
troller can determine tmax based on the base-period and slot length, both being system
parameters. The scheduler disburses time-slots, T ≡ {0, 1 . . . , tmax}, to the sources
of time-triggered �ows while also routing them. To avoid queuing, the scheduler is
restrained from allocating the same time-slot to multiple �ows that have overlapping
paths. For instance, in the topology shown in Figure 4.2, each of the �ows, Fi, is al-
located a di�erent time-slot to su�ciently skew their transmissions and avoid queuing
on the bottleneck link (from switch S1 to S2). The sources then compute the exact
transmission instants using the base-period, the slot length, its transmission period,
and the allocated time-slot. Without a suitable time-slot for a �ow, the source can-
not send packets as high priority tra�c. Overall, by using coarse-grained schedules
which determine only the transmission time at the source host (network edge) instead
of computing �ne-grained link schedules (through the network core) we avoid having
to rely on underlying hardware to enforce such schedules.

TSSDN being a converged network supports scheduled tra�c along with best-e�ort
tra�c. The links carry best-e�ort tra�c while waiting for high priority time-triggered
packets to arrive during a time-slot. This implies that the best-e�ort frames in transit
can delay the high priority scheduled tra�c. If best-e�ort frame is being transmitted
while a high-priority frame belonging to a time-triggered �ow arrives at a switch,
either the high-priority frame is delayed till the transmission of the best-e�ort frame
is �nished or the best-e�ort frame is preempted to make way for scheduled tra�c. In
the former case, the frame may be delayed per hop by the time required to transmit an
MTU sized packet in the worst case, while in the latter case the per hop delay ranges
between 64�128 byte transmission times only. Given that the network diameter is
restricted to 7 hops, the total amount of jitter introduced in TSSDN is also bounded.
Zero queuing delay is, thus, a slightly idealized formulation of the goal. However,
by almost eliminating the queuing delay for time-triggered �ows (other than the one
packet under transmission per hop) in the network, TSSDN delivers their corresponding
packets to their destinations as early as possible. Furthermore, the slight jitter in
TSSDN can be minimized by adding bu�ers to the destination host. Overall, TSSDN
requires switches that have mechanisms to separate time-triggered tra�c from best-
e�ort tra�c (e.g. using priority queues) and optionally frame preemption mechanisms
like in IEEE 8021.Qbu [45] to minimize the jitter resulting from other tra�c classes.

This coarse grained scheduling in TSSDN results in fewer time-slots than what is pos-
sible with �ne-grained link schedules. Hence, the problem we deal with here is how to

compute a transmission schedule that maximizes the number of scheduled time-triggered

�ows? By maximizing the time-triggered �ows that can be carried over the network, a
larger number of real-time applications can be supported. This maximization problem
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is NP-complete, reducible from the static light path establishment problem [87] en-
countered during routing and wavelength assignment in optical networks which deals
with allocation of wavelengths to optical data �ows and routing them such that no two
�ows with the same wavelength traverse over the same optical link.

In this chapter, we present scheduling algorithms in the form of ILP formulations
that compute transmission schedules for a static set of time-triggered �ows known a

priori. ILPs are a broadly accepted standard method for such optimization problems
with readily available, highly optimized solvers. Alternatively, as mentioned in the
related work, Satis�ability Modulo Theories (SMT) based approaches could also be
used. However, since ILP and SMT showed similar performance [88], the formulations
presented in this work are limited to ILPs.

6.3 Scheduling & Routing in TSSDN

The goal of the static scheduling problem is to maximize the number of time-triggered
�ows which are accommodated in the network, i.e., the �ows which are allocated time-
slots and routes. The general approach to this problem is to de�ne for each time-
triggered �ow a set of candidate paths between its source and destinations. The solution
to the scheduling problem requires routing �ows over one of its candidate paths and
allocating them a time-slot, while maximizing the number of �ows that can be allocated
with a time-slot and a route. This approach is referred to as Scheduling with Pathsets
Routing (S/PR).

The choice of candidate paths for the �ows in�uence the number of �ows successfully
scheduled. In general, the set of candidate paths for each �ow can be made from all the
shortest paths between its source and its destinations. Selecting all paths (including
the non-shortest paths) that exist between the source and the destinations of the �ow
in the set of candidate paths yields the best solution for the static scheduling problem.
Such an approach is named as Scheduling with Unconstrained Routing (S/UR). The set
of candidate paths may also be restricted to only one of the randomly chosen shortest
paths for computing solutions faster. Such an approach with a priori routing is named
as Scheduling with Fixed Routing (S/FR). It must be noted that the S/UR and S/FR

are speci�c cases of S/PR and are at the two extremes of the solution space.

In the following, we present the detailed ILP formulations for the three approaches.
In interest of comprehension, we restrict these ILP formulations to schedule and route
unicast time-triggered �ows. Along with each of these formulations, we also mention
the rather trivial extensions with which the approaches can be extended to handle
multicast �ows
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6.3.1 Terminologies

For the ILP formulations, we denote the network topology as a directed graph G ≡
(V,E), where V is the set of nodes and E ≡ {(i, j)| i, j ∈ V and i, j are connected by a
network link} is a set of tuples representing the network links. Further, V ≡ (S ∪H),
where S and H are sets of switches and end systems, respectively. The time-triggered
�ows are denoted as a tuple, tsi ≡ (si, di, pi), where si, di ∈ H. Here, si and di is
the source and the destination of the �ow respectively, while pi is the period of the
�ow. The set of time-slots available for disbursement is denoted as T ≡ {0, 1 . . . , tmax}.
Additional functions needed to model the topology and time-triggered �ows are listed
in Table 6.1.

6.3.2 Determining the Base-period in TSSDN

In TSSDN, the base-period determines the number of time-slots available in the network
for accommodating time-triggered �ows. While higher values for the base-period result
in a larger number of time-slots, the base-period must also be restricted to values
lower than or equal to the lowest transmission period that a �ow may have in the
network. Moreover, the choice of the base-period is important as the periods of time-
triggered �ows are constrained to be an integral multiple of the base-period. For �ows
violating this condition, the period can be reduced to the nearest multiple of base-period.
However, this results in an equivalent increase in the network load (packets belonging
to time-triggered �ows per unit time) on account of scheduled tra�c. For a given set
of �ows, TS, and a base-period, tbp, the network load due to scheduled �ows is:

Scheduled Tra�c Load =
∑

∀ ts ∈ TS

1

tbp · bperiod(ts)tbp
c

The network load on account of the time-triggered �ows in TSSDN varies based on
the selected value of the base-period. To minimize load due to scheduled tra�c, the
base-period is determined by evaluating the load for scheduled tra�c across di�erent
values of possible base-periods. A reasonable value is chosen such that enough time-
slots are available for scheduling while the load on account of scheduled tra�c is also

Helper Function Parameters Output

in(n)
n ∈ V {(u, v) ∈ E|v = n}

out(n) {(u, v) ∈ E|u = n}
src(ts)

Flow ts,
ts ≡ (s, d, p)

s

dst(ts) d

period(ts) p

Table 6.1: Helper functions for modeling network topology and time-triggered �ows

73



6 Joint Scheduling and Routing using SDN

minimal. Once chosen the base-period remains �xed unless new �ows need to be
accommodated in the network, e.g., in dynamic scenarios. It must be noted that
modifying the base-period at runtime results in high coordination overhead and is,
hence, avoided in TSSDN.

6.3.3 Scheduling with Pathsets Routing (S/PR)

For Scheduling with Pathsets Routing, we extend the model of time-triggered �ows to
additionally include a set of �candidate� paths that it may use. The ILP formulation
is restricted to route the �ow through one of the paths in this set instead of searching
the complete solution space for arbitrary paths. We use the set of all shortest paths
between the source and destination of a given �ow as its candidate paths.

ILP Inputs

The inputs for the ILP formulation are the set of �ows to be scheduled and the paths
through which each of the �ows may be routed.

• Set of �ows to be scheduled, TS.
TS ≡ {tsi}; i ∈ [1 . . .NumFlows ]

Here, NumFlows represent the number of �ows to be scheduled.

• Set of possible paths through which the �ows may be routed, P .
P ≡ {pl}; l ∈ [1 . . .NumPaths]

This set contains all the shortest paths from the source to the destination for all
�ows ts ∈ TS.

• Mapping between �ows and paths, SP.
SP ≡ {spi,l}; ∀i ∈ TS, ∀l ∈ P
spi,l = 1, if �ow i can traverse over path l, else 0.
It must be noted that while a �ow has multiple candidate paths over which it
may be routed, a given path can be used by only one �ow, i.e., the path uniquely
identi�es the �ow.

• Mapping between paths and links, PL.
PL ≡ {pll,j}; ∀l ∈ P , ∀j ∈ E
pll,j = 1, if path l includes link j, else 0.

ILP Variables

In this formulation, we allocate time-slots to paths instead of �ows.
PT ≡ {ptl,k}; ∀l ∈ P , ∀k ∈ T
ptl,k = 1, if path l is allocated time-slot k, else 0.
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Objective Function

The objective for this ILP formulation is to maximize the number of paths with assigned
time-slots.

Maximize
∑
∀k ∈ T

∑
∀l ∈ P

ptl,k (6.1)

Constraints

The constraints for this ILP formulation are enumerated as below:

• Each path may be allocated at-most one time-slot.∑
∀k ∈ T

ptl,k ≤ 1 ∀l ∈ P (6.2)

• Each �ow can be allocated at-most one time-slot, i.e., for a given �ow, only one
of its candidate paths can be allocated a time-slot.∑

∀k ∈ T

∑
∀l ∈ P

ptl,k × spi,l ≤ 1 ∀i ∈ TS (6.3)

• To avoid collisions, no two paths with overlapping links will be assigned the same
time-slot. ∑

∀l ∈ P

ptl,k × pll,j ≤ 1 ∀k ∈ T,∀j ∈ E (6.4)

The ILP solver sets values for PT based on which the network controller can disburse
the time-slots for the �ows and accordingly route them as well.

This ILP formulation can be easily extended for handling multicast �ows by using
candidate spanning trees for the corresponding �ows. Spanning tree for a multicast
�ow connects the source host of the �ow with all the destinations. Computing multiple
spanning trees for a set of nodes is a well researched problem and is now standardized
into the Multiple Spanning Tree Protocol speci�ed in the IEEE 802.1Q standard [81].

6.3.4 Scheduling with Unconstrained Routing (S/UR)

In this approach, the scheduler is free to route the time-triggered �ows over any avail-
able path. Ideally, we could simply compute all paths between the source and desti-
nation pairs and reuse the ILP formulation of S/PR. However, computing all paths
between a pair of nodes in a network has a time complexity of O(n!). Hence, we
integrate the selection of path for the �ows into the ILP formulation.
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The network topology and the set of desired time-triggered �ows are the inputs. Vari-
ables are the time-slots and paths for the �ows. The optimization objective is to
maximize the number of �ows that are allocated a time-slot.

ILP Inputs

The inputs required for the ILP formulation are as follows:

• Network Topology, G ≡ (V,E).

• Set of time-triggered �ows to be scheduled, TS.
TS ≡ {tsi}; i ∈ [1 . . .NumFlows ]

Here NumFlows represent the number of �ows to be scheduled.

ILP Variables

The decision variables used for formulating the ILP are as follows:

• Mapping of �ows to network links, SL.
SL ≡ {fi,j} ∀i ∈ TS, ∀j ∈ E
fi,j = 1, if the �ow i traverses over link j, else 0.

• Mapping of �ows to time-slots, ST.
ST ≡ {ti,k} ∀i ∈ TS, ∀k ∈ T
ti,k = 1, if the �ow i is allocated time-slot k, else 0.

• Helper variables, SLT. These enable the formulation of the scheduling problem
as an ILP.
SLT ≡ {mi,j,k} ∀i ∈ TS, ∀j ∈ E, ∀k ∈ T
mi,j,k = 1, if the �ow i traverses over link j and is allocated a time-slot k, else 0.

Objective Function

The objective function is formulated so as to primarily maximize the number of �ows
that are allocated time-slots. In some situations di�erent solutions might exist with the
same number of scheduled �ows but where some solutions contain loops in their paths.
Obviously, in such cases we would prefer the solutions without loops. Therefore, we
de�ne a secondary objective for weeding out solutions that route �ows over paths with
loops. This term in the objective keeps the path length at a minimum, thus, eliminating
paths with loops, and is factored such that its total contribution to the objective is less
than one. This ensures that the ILP solver gives priority to maximizing the number of
�ows that can be scheduled rather than minimizing the length of the individual paths
allocated to them. Alternatively, we can process the computed solutions to remove the
loops in the paths in the absence of the secondary objective.

76



6.3 Scheduling & Routing in TSSDN

Maximize ∑
∀i ∈ TS

∑
∀k ∈ T

ti,k︸ ︷︷ ︸
Primary Objective

− 1

(|TS | × |E|) + 1
×

∑
∀i ∈ TS

∑
∀j ∈ E

fi,j︸ ︷︷ ︸
Secondary Objective

(6.5)

Constraints

The constraints for the ILP formulation are as follows:

• Every �ow shall be allocated at most one time-slot as they carry only one MTU-
sized packet during their corresponding period.∑

∀k ∈ T

ti,k ≤ 1 ∀i ∈ TS (6.6)

• The path for a given �ow, i, starts at its source host and ends at its destination
host, i.e., the source host has only one outgoing link with no incoming links while
the destination host has one incoming link with no outgoing links. For all the
other network nodes, the number of incoming links is equal to the number of
outgoing links. ∑

∀j∈in(src(i))

fi,j = 0
∑

∀j∈out(src(i))

fi,j = 1

∑
∀j∈in(dst(i))

fi,j = 1
∑

∀j∈out(dst(i))

fi,j = 0
(6.7)

∑
∀j∈in(n)

fi,j =
∑

∀j∈out(n)

fi,j ∀n ∈ V \ {src(i), dst(i)} (6.8)

This constraint is valid for all �ows, i.e., ∀i ∈ TS.

• Multiple �ows cannot be routed over a given link during any of the time-slots.
This constraint ensures that the entire path for each �ow is reserved for the �ow
exclusively during its allocated time-slot.∑

∀i ∈ TS

mi,j,k ≤ 1 ∀j ∈ E, ∀k ∈ T (6.9)

• Finally, we need additional constraints to ensure that the ILP solver provides
consistent values for the variables, i.e., for a �ow i, edge j and time-slot k, the
variable mi,j,k can be 1, only if variables fi,j and ti,k are both 1. Hence, the
following constraint is required:

mi,j,k = fi,j × ti,k ∀i ∈ TS ,∀j ∈ E,∀k ∈ T (6.10)
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Although this constraint is non-linear, it can be transformed into purely linear
constraints as follows:

mi,j,k ≤ fi,j

mi,j,k ≤ ti,k

mi,j,k ≥ fi,j + ti,k − 1

∀i ∈ TS , ∀j ∈ E, ∀k ∈ T (6.11)

The ILP solver sets values for the variables SL and ST corresponding to the computed
schedule. The network controller con�gures the �ow-tables in the switches for routing
�ows as per SL and disburses the time-slots as per ST .

This ILP formulation results in an optimal schedule, i.e., maximum number of time-
triggered �ows are scheduled from a given set of �ows, if the transmission period of all
�ows is equal to the base-period. Presence of �ows with higher periods might result
in sub-optimality, the extent of which depends on the number of such �ows and the
di�erence between its individual periods and the base-period.

The presented ILP formulation can be extended to handle multicast �ows by use of
additional auxiliary variables per �ow to keep a count of number of destinations of a
�ow reachable over a link and reformulating the constraints 6.7 and 6.8 on the lines of
the routing constraints 5.2, 5.3, and 5.5, presented in Chapter 5.

The runtime for computing transmission schedules with this ILP formulation is im-
practical (order of days), mainly because of the two degrees of freedom it has, viz.,
the routes for the �ows and the corresponding time-slots. However, with respect to
paths it seems reasonable to prefer short paths as it would result in fewer possibilities
of slot collisions along paths sharing the same links. Our other approaches�S/PR and
S/FR�restrict the search space to explore only the shortest paths, and thus, reduce
the runtime. This may, however, result in a lower number of �ows being scheduled in
comparison to S/UR.

6.3.5 Scheduling with Fixed-path Routing (S/FR)

Another approach further reducing the execution time for computing transmission
schedules is the Scheduling with Fixed-path Routing Approach. This approach extends
the idea of S/PR. Here, we take a radical approach by choosing the path for a given �ow
randomly from the set of all shortest paths between its source and destination similar
to Equal Cost Multi Path (ECMP) routing. Then, the ILP formulation only deals
with the time-slot allocation. While this approach is faster than S/PR, the computed
schedule might be of even lower quality relative to S/UR.
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ILP Inputs

The inputs for the ILP formulation is the set of �ows to be scheduled and the path
through which each of the �ow is routed (selected at random from the set of all shortest
paths between the source and the destination of the �ow).

• Set of �ows to be scheduled, TS.
TS ≡ {tsi}; i ∈ [1 . . . NumFlows]

• Mapping of �ows to links, SL, indicating the links that belong to the path that
a �ow must traverse.
SL ≡ {fi,j}; ∀i ∈ TS, ∀j ∈ E :

fi,j = 1, if �ow i traverses over link j, else 0.

ILP Variables

Decision variables are required only for mapping a �ow to time-slots. ST indicates the
time-slot that is allocated for a �ow.
ST ≡ {ti,k}; ∀i ∈ ST, ∀k ∈ T
ti,k = 1, if �ow i is allocated time-slot k, else 0.

Objective Function

The objective function is formulated so as to maximize the number of �ows that are
allocated time-slots.

Maximize
∑
∀i ∈ TS

∑
∀k ∈ T

ti,k (6.12)

Constraints

The constraints for this ILP formulation are enumerated as below:

• Each �ow may be allocated at most one time-slot.∑
∀k ∈ T

ti,k ≤ 1 ∀i ∈ TS (6.13)

• To avoid collisions, no two �ows can be allocated the same time-slot if they have
overlapping paths. ∑

∀i ∈ TS

ti,k × fi,j ≤ 1 ∀j ∈ E,∀k ∈ T (6.14)

79



6 Joint Scheduling and Routing using SDN

The ILP solver allocates time-slots to the �ows through T . Based on these values, the
slots can be disbursed by the network controller.

6.4 Discussion

6.4.1 Network Utilization in TSSDN

The scheduling model in TSSDN allocates a time-slot to each �ow such that the entire
path over which the �ow traverses is exclusively reserved for it. The time-slots are,
hence, required to be long enough for guaranteeing this even for the worst case, i.e.,
traversal of an MTU-sized packet over the network diameter. Ideally it would be
su�cient to reserve time-slots over network links, where the length of time-slots is
limited to the time required for transmitting the actual size of the packet plus some
guardbands to isolate the scheduled tra�c from best-e�ort tra�c, e.g. using the gating
mechanisms in IEEE 802.1Qbv [30] [31].

The coarse grained scheduling model of TSSDN results in lower available bandwidth
for scheduled tra�c in comparison to the �ne-grained link scheduling in the ideal case.
However, TSSDN, being work-conserving in nature, makes available the remaining
bandwidth for best e�ort tra�c. Given that a su�cient amount of best-e�ort tra�c is
available in the network, TSSDN can achieve full network utilization. In contrast, with
�ne-grained link scheduling (non-work-conserving in nature), like in IEEE 802.1Qbv
networks, bandwidth is lost due to the presence of guard-bands or when reserved time-
slots are not used by time-sensitive tra�c, e.g. in event-based communication. During
the guard-bands, new packets are not taken up for transmission, even if the correspond-
ing link is idle, to avoid interference with the next time-slot for the scheduled tra�c.
Usually, the guard bands are con�gured to be long enough for a MTU-sized packet
to be transferred over the corresponding link, unless the switching hardware supports
the frame pre-emption mechanisms from IEEE 802.1Qbu. The number of guard bands
required and the resulting drop in network utilization is dependent on the topology of
the network and the used scheduling approach.

In absence of best-e�ort tra�c, the network utilization would drop signi�cantly for
TSSDN. The worst case for TSSDN would be a line topology with 6 switches handling
only scheduled tra�c. Remember that TSSDN restricts the network diameter to 7
hops. In this case, the network utilization may potentially drop to approximately one-
seventh of what would be possible with �ne-grained link scheduling. Furthermore, the
reservation for time-triggered tra�c in TSSDN does a�ect the bandwidth available for
best-e�ort tra�c. However, transport protocols like TCP will adapt to the available
bandwidth automatically.
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6.4.2 Accounting for Time-periods in TSSDN

One of the shortcomings of the presented ILP formulations for computing schedules and
routes in TSSDN is that it does not consider the period of the �ows for the computation.
Thus, the already scarce time-slots for the time-triggered �ows is distributed assuming
that all �ows have periods equalling the base-period. Accounting for the individual
transmission periods of the �ows increases the complexity of the scheduling problem
manifold along with the execution times of the ILP solver. Most of the related work [68]
and state-of-the art �eld-bus architectures schedule time-triggered �ows in industrial
automation systems assuming that they transmit either with base-period or periods
very close to it. Accordingly, TSSDN also ignores the actual transmission periods for
the �ows for scheduling.

In Chapter 7, we present additional extensions to TSSDN to share the time-slots across
multiple �ows with periods higher than the base-period in dynamic scenarios.

6.5 Evaluations

We evaluated TSSDN on two fronts. Firstly, we measured the end-to-end latency for
time-triggered tra�c on the data plane of TSSDN under various scenarios to deter-
mine if it provides the promised real-time guarantees. Secondly, we evaluated the ILP
formulations, executing on the control plane, to compute transmission schedules for
randomized graphs created using various models to exhibit its correctness and scala-
bility.

6.5.1 Data Plane Evaluations for TSSDN

To evaluate the real-time properties provided by TSSDN on the data plane, we imple-
mented the benchmark topology, shown in Figure 4.2, using �ve commodity machines
(Intel Xeon E5-1650) each equipped with an Intel XL710 quad 10GbE network inter-
face and an Edge-Core cut-through bare-metal switch (AS5712-54X) running PicOS
(ver 2.6.1). The switch was partitioned into virtual switches to create the topology,
while each machine hosted two end systems, for instance, Host A1 and B1 were placed
on the same machine but used di�erent network interfaces. We used the Precision
Time Protocol (PTP) for synchronizing clocks on all machines. To this end, we used a
separate network infrastructure using a third network interface on each machine (two
interfaces are used by the end systems hosted on the machine) dedicated to PTP syn-
chronization. This was basically necessary because of two reasons: First, our switch
did not support PTP. Thus, high priority time-triggered packets could potentially im-
pact the accuracy of PTP latency measurements. With a switch which can measure
the port-to-port residence time of PTP packets, the precision of clock synchronization
would not be a�ected. Secondly, DPDK exclusively allocates a network interface to a
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Figure 6.3: Impact of packet prioritization

process, so we cannot easily run a PTP daemon over the same port. Sharing a port be-
tween di�erent processes is a common problem of current userspace packet processing
frameworks and an orthogonal research problem.

In-network Prioritization

The end systems in TSSDN use userspace packet processing frameworks to adhere with
the computed schedules. However, this alone is insu�cient as TSSDN is also meant to
additionally transport best-e�ort tra�c. In this section, we experimentally show the
importance of tagging time-triggered packets as priority tra�c, while also motivating
the need for transmission scheduling in TSSDN.

To determine the impact of best-e�ort tra�c, we loaded the bottleneck link (link
from switch S1 to S2) of our benchmark topology with random tra�c (random packet
sizes and variable bitrate) initiated by end systems A2�A5. The link was loaded to
around 80% of its total capacity. With this cross tra�c, we measured the end-to-end
latencies between the source and destination DPDK applications for 10,000 packets
sent from A1 → B1 with a period of 10ms. As shown in Figure 6.3, the end-to-
end latency �uctuates drastically between 7�66µs, if the packets are not marked as
priority packets by the source despite the spare capacity in the bottleneck link. End
systems may tag time-triggered packets as high priority packets so that its delivery
would be expedited by the data plane. We used the Priority Code Point (PCP) �eld of
the IEEE 802.1Q VLAN tag and marked time-triggered packets with highest possible
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# Flows Avg. Std. Dev. Min Max

1 Flow 7.99 0.62 7 13
2 Flows 8.09 0.57 7 14
3 Flows 8.04 0.49 7 14
4 Flows 8.07 0.48 7 14
5 Flows 8.06 0.54 7 14

Table 6.2: Latencies (in µs) for time-triggered �ows when scheduled in adjacent time-
slots

priority class (priority 7). With prioritization of time-triggered tra�c, the end-to-end
latency with cross tra�c varies in a narrower band of 7�13µs. However, the standard
deviation of end-to-end latency has increased from sub-microsecond range (in absence
of any interference from best-e�ort tra�c) to 1.68µs. This is because our switch
does not support frame preemption (IEEE 802.1Qbu [45]), and hence time-triggered
packets, though higher in priority, must queue till the current packet is transmitted.
With support for frame preemption, higher priority time-triggered packets will not be
a�ected by the lower priority cross-tra�c.

The impact of prioritizing time-triggered packets is, however, nulli�ed, if time-triggered
�ows are not temporally or spatially isolated. In absence of scheduling, no guarantees
can be provided with respect to the bounds on end-to-end delays and jitter, even if the
time-triggered packets are tagged as high priority packets.

Impact of Scheduling

To show the impact of scheduling, we deployed a varying number of time-triggered �ows
on our benchmark topology. We used a slot-length of 15µs, considering the end-to-
end delay in traversing the network diameter of our benchmark topology. We assume
a base-period of 1ms and that all �ows use their slots completely, i.e., transmit one
packet every 1ms. The �ows are allocated adjacent slots to demonstrate that schedules
can be adhered precisely by the end systems. It may be noted that we evaluate our
system in the toughest scenario with adjacent slots occupied on a 10Gbps link as
this would amplify the consequence of any non-adherence to schedules. We measured
end-to-end latencies for 105 packets per �ow and summarized the results in Table 6.2.
The end-to-end delays for the time-triggered �ows vary in a narrow band of ≤ 7µs,
irrespective of the number of �ows in the network. Further, the standard deviation for
the latencies experienced by the time-triggered �ows is also in sub-microsecond range
indicating minimal communication jitter. In networks with lower bandwidth links,
the performance would be equally good or even better. Thus, we show that suitable
transmission schedules impart real-time communication properties over the data plane
of TSSDN.
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# Flows Avg. Std. Dev. Min Max

2 Flows 8.63 0.86 7 14
3 Flows 9.19 1.14 7 14
4 Flows 9.75 1.42 7 15
5 Flows 10.2 1.71 7 17

Table 6.3: Latencies (in µs) for time-triggered �ows when scheduled in the same time-
slot

Further, to emphasize the importance of transmission scheduling, we measure the end-
to-end latencies for a varying number of time-triggered �ows when they are assigned
the same transmission slot. Our ILP formulations would never allow these �ows to
interfere, however, in absence of scheduling such a scenario cannot be ruled out. Hence,
we repeated the above experiment but allotted the same slot to the �ows instead of
adjacent ones. The results summarized in Table 6.3 show that end-to-end latency
of time-triggered �ows are a�ected if more than one �ow is assigned the same slot.
The average end-to-end delay and the standard deviation steadily increases with the
number of time-triggered �ows sharing the time-slot. Moreover, the jitter increases
beyond 7µs when more than 3 time-triggered �ows contend for traversing a network
link. This scenario also shows that in absence of scheduling, the time-triggered tra�c
could end up impeding each other in the network.

We observed that the jitter depends on the transmission frequency of the DPDK ap-
plication and size of the packets being transmitted. For instance, jitter of ≤ 3µs was
observed at a frequency of 100Hz for 64-byte sized packets, while it increased to ≤ 7µs
at a frequency of 10 kHz for 1500-byte sized packet. We infer that a part of this jitter
(1�2µs) originates from the interval timers in Linux, while the rest is a result of process
preemptions or delayed availability of computing slice for the userspace applications
(despite executing them with highest priority, i.e., nice level −20 in Linux) at source
and destination hosts. One idea to reduce this residual jitter further is to use real time
kernel patches on the source hosts.

6.5.2 Control Plane Evaluations for TSSDN

In this section, we evaluate the various ILP formulations, presented in Section 6.3, with
respect to the quality of schedules they compute and their scalability.

We use the commercial ILP solver CPLEX from IBM to solve our ILP formulations
which are speci�ed using PuLP [89], a Python-based tool-kit to specify ILPs. Moreover,
we created di�erent network topologies (di�erent sizes and di�erent network models)
using NetworkX [62], a Python library for creating complex networks. In detail, we used
the Erd®s-Rényi (ER) model [60] (random graphs where nodes have similar degree),
random regular graphs (RRG) (random graphs where nodes have same degree), the
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(a) Quality comparison of the ILPs (b) Scheduling runtime vs No. of �ows

(c) Scheduling runtime vs No. of slots (d) Scheduling runtime vs Topo. size

Figure 6.4: Control Plane Evaluations Results

Barabási-Albert (BA) model [61] (scale-free networks where few nodes have high degree
and many have small degree), and the Waxman model [90] (geographic model favoring
short-distance links over long links). Together, these models for randomized graphs
comprehensively test the limits of our ILP formulations. The sizes of these topologies
and the number of time-slots and �ows used as input are speci�ed with the concrete
evaluations.

We used two machines for evaluating our ILPs. The �rst is a high performance multi-
processor machine with 2× 8 cores (Intel Xeon E5-2650) and 128GB RAM, while the
second is a commodity machine with 2 cores and 8GB RAM.

Qualitative Evaluations

To evaluate the quality of the schedules generated by the ILP formulations S/PR and
S/FR with respect to S/UR, we computed the transmission schedules in 160 evaluation
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scenarios using 8 di�erent topologies (3 RRG, 2 ER, and 3 BA), each with 24 hosts
and 6 switches. Note that we had to choose a smaller topology to be able to compute
the schedule using S/UR as reference since it has an impractical runtime. Limiting the
number of components in the topology also limited the number of topologies we could
examine. Each scenario consisted of 20�110 �ows with random source and destination
hosts to be scheduled with 3�5 available time-slots in the network. We have deliberately
chosen a smaller number of slots to create challenging scenarios for our ILP formulations
even for smaller numbers of �ows. As a performance metric, we calculate the relative
quality of the schedules computed by S/PR and S/FR, i.e., the ratio of the number of
�ows scheduled by them to the number of �ows scheduled by S/UR.

Figure 6.4a shows the cumulative distribution of the relative quality achieved by S/PR
and S/FR. This �gure shows that the quality of the solutions they generate closely
approximate the quality of the ones computed using S/UR. For instance, for S/PR,
80% of the scenarios have at least a relative quality of 98% or better. In detail, S/PR
and S/FR generated schedules with 100% relative quality in about 67% and 38% of
the evaluation scenarios with average relative qualities of 99% and 97%, respectively.

Scalability Evaluations

Knowing the quality of the di�erent approaches, we next evaluate their scalability, i.e.,
the time to calculate solutions for di�erent scenario sizes. Our evaluations show that
the runtime for computing the transmission schedule depends mainly on three factors:
the number of �ows to schedule, the number of available time-slots, and the size of the
topology. The model on which the topology is based has no in�uence on the execution
times of the scheduling algorithms.

First, we vary the number of �ows for scheduling using the ILP formulations. We
use a small scenario, an ER topology consisting of 24 hosts and 6 switches (38 net-
work links) with 5 time-slots for disbursement, to measure the runtime for computing
schedules using our various approaches. We measure the runtime for computing the
schedules with a varying number (20�110) of �ows on our high performance machine.
As shown in Figure 6.4b, the runtime for computing the schedules using S/PR and
S/FR is at least an order of magnitude lower than that for computing it using S/UR.
As per our evaluations, S/PR and S/FR could compute schedules for over 100 �ows in
approximately 7 sec and 3 sec, respectively, while computing the schedule using S/UR
required over 2min. This translates to an average scheduling time of 1.1 sec, 61msec,
and 24msec, per �ow for S/UR, S/PR, S/FR, respectively. We observed similar or
worse results with execution times running into several hours to days for computing
schedules using S/UR on other topologies of comparable scale.

Next, we vary the number of available time-slots to evaluate its impact on the runtime
of the ILP formulations. For this and subsequent evaluations, we execute the ILP
solver on the commodity machine and do not use the S/UR approach as the scenarios
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are too large for computing a schedule with it. Here, we use a topology with 200 hosts
and 10 switches (256 network links) based on the Waxman model. We scheduled 300
�ows on this topology using the ILP formulations and measured the average time to
schedule a �ow. The number of time-slots were varied between 5�50. As shown in
Figure 6.4c, the runtime increases rapidly for the S/PR approach with an increasing
number of available time-slots in contrast to the S/FR approach, which scales much
better (approximately linearly with number of time-slots). It may be noted that a
network with 1Gbps links and a network diameter of 8 hops provides only about 50
slots (considering MTU as 1500 bytes) for a base-period of 1ms. Moreover, assuming
that a cyber-physical system (CPS) comprises two �ows (one from sensor to the CPS
controller and other from the CPS controller to the actuator), schedules for supporting
up to 150 CPS can be calculated by our ILPs. Thus, we claim that our ILP formulations
scale well for realistic scenarios.

Finally, we evaluated the impact of topology size (number of network links) on the
runtime of the ILP formulations. For this evaluation, we used di�erent topologies
(30�256 network links) and scheduled over 100 �ows on them with 50 time-slots for
disbursement. Figure 6.4d summarizes the measured runtimes for S/PR and S/FR.
We observe that the runtime of S/FR increases linearly with the size of the topology
and takes on an average less than 2 sec to schedule a �ow in a topology containing
256 links. For the S/PR approach, the runtime is not directly related to the topology
size. It, rather, depends on the number of shortest paths between the sources and the
destinations of the �ows, i.e., the path diversity of the network. Nonetheless, the worst
case average time to schedule a �ow on a topology with 200 links was just over 12 sec
for this ILP formulation.

It may also be noted that in all of our experiments to evaluate runtimes for the algo-
rithms, repeated runs yielded similar runtimes with very low variances.

Computation of Base-period

We also evaluated the runtime for computation of base-period for a set of �ows. The
evaluations showed that the computation of the base-period for the �ows to be sched-
uled in the network increases linearly with the number of �ows. As shown in Fig. 6.5,
the base-period for up to 105 �ows in TSSDN can be determined in 150 sec on com-
modity machines. Thus, it is reasonable to compute the base-period for the �ows
upfront.

6.5.3 Evaluation Summary

In summary, our evaluations showed:

1. TSSDN provides virtually constant end-to-end latency (std. dev. < 1µs) with
worst case jitter ≤ 7µs for the time-triggered tra�c on our benchmark topology.
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Figure 6.5: Base-period computation

2. The S/PR and S/FR approaches for computing transmission schedules closely
approximate the solution computed by S/UR (which provides optimal solutions
in most practical cases), by constraining routing, and thus, resulting in lower
runtimes.

3. Our ILP formulations, S/PR and S/FR, scale well to compute schedules for over
300 �ows in networks with more than 200 network links with a data-rate of 1Gbps
(≈ 50 time-slots assuming a base-period of 1ms).

6.6 Related Work

As described in the previous chapters, there is a strong trend to make the widely
adopted IP-based networks and IEEE 802 networks ready for real-time tra�c. These
developments are driven, in particular, by the IEEE 802.1 Time-Sensitive Networking
Task Group [16] and the IETF DetNets Working Group [23]. We intentionally base the
design of TSSDN on the basic principles conforming with the initial proposals of these
standards bodies like synchronized end systems and logically centralized con�guration.
This directly makes our contributions like the scheduling algorithms�which have not
been considered by these groups so far�applicable to upcoming standards.

Software-de�ned networking, being a rather recent development and primarily foreseen
for usage in data centers, does not yet extensively look to provide real-time properties
for communication. Nonetheless, there are quite a few noteworthy contributions which
we review here. Qian et al. present [91] routing algorithms for real-time communication
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�ows such that their deadlines are respected and implement a EDF-based scheduler
on the network elements using virtual SDN switches to show that the deadlines of the
�ows are met. Kumar et al. present a framework for synthesizing routes and switch
con�gurations for isolating real-time �ows into separate queues per outgoing switch-
port using SDN [92]. By means of evaluation on a white-box switch, they show that
such an isolation leads to stable delays for the real-time �ows. However, queues being
a limited resource in networks, the approach to provide each real-time �ow with its
own queue does not scale. Moreover, their evaluations exhibit signi�cant variance in
end-to-end latencies when more than 4 �ows are routed over the same switch port.

QJump is yet another approach which exploits the queues in the network to provide dif-
ferent levels of latency guarantees to the tra�c [93]. QJump trades o� throughput with
latency variance and allows the sending applications to choose between the di�erent
trade o�s. Applications can either send real-time tra�c which is strictly rate-limited
but is provided with bounded latency or non-real-time tra�c with high throughput
but at the same time high latency variance.

Scheduling and routing tra�c with the objective to eliminate incurred queuing delays
and providing low latencies in data center networks is a known approach. Vattikonda
et al. presented a system to enforce computed schedules by means of the 802.3x �ow
control and a centralized link scheduler in network with commodity hardware without
relying on clock synchronization [94]. Fastpass extends this idea further by integrating
scheduling and routing using a centralized arbiter for data center networks [95]. How-
ever, the scheduling in these systems is done for sporadic tra�c generated by the hosts
in data center networks, rather than for sources of time-triggered tra�c. Moreover, the
scheduler in Fastpass restricts the topologies that can be deployed to rearrangably non
blocking (RNB) networks like the Clos networks for faster computation of schedules
and routes [96]. Overall, these approaches are specially tailored for the tra�c in data
centers which are rather soft real-time in nature [97] [98].

There have also been attempts to incorporate deadline awareness for communication
�ows in transport and network layer of the stack, e.g., Deadline-aware Data-center
TCP [99], Preemptive Distributed Quick (PDQ) �ow scheduling [100], D3 [101], etc.
These approaches aim to maximize the number of �ows meeting their corresponding
deadlines but do not consider their latency variance.

Schweissguth et al. also propose the usage of SDN for handling time-triggered tra�c
by means of a TDMA scheme [102]. While their solutions for the scheduling and
routing problem are iterative in nature, we deal with ILP formulations which provide
exact solutions for our optimization problem. Along with our work, this contribution is
among the �rst scienti�c contributions to exploit the logical centralization of software-
de�ned networking for handling time-triggered communication �ows in a production
shop�oor.
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The related work on handling time-triggered tra�c using scheduling and routing to
isolate the corresponding �ows from other classes of tra�c using specialized hardware
is already presented in Section 4.8 and 5.5.

6.7 Summary

In this chapter, we presented Time-sensitive Software De�ned Networks, which provide
real-time guarantees for communication of time-triggered tra�c by means of transmis-
sion scheduling at the source hosts only. As a �rst step, we presented a set of ILP
formulations that compute transmission schedules for a given set of pre-de�ned time-
triggered �ows in a network topology. Our evaluations showed that the ILPs e�ciently
calculate high quality schedules and the adherence to these schedules result in deter-
ministic network delays. An interesting open question which we also left for future work
is, how much jitter can be reduced with hardware support (specialized NIC or NetF-
PGA) or by integrating real-time operating systems (e.g. RTnet [103]) for bounding
the jitter in the source host.
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CHAPTER 7

INCREMENTAL SCHEDULING AND ROUTING IN

TSSDN

7.1 Introduction

We introduced the Time-sensitive Software-de�ned Network (TSSDN), an SDN-based
architecture, for handling time-triggered tra�c along with best-e�ort tra�c in Chap-
ter 6. In TSSDN, the transmissions of time-triggered �ows are scheduled on the source
hosts only, while its simplistic data plane, consisting of switches equipped with in-
network prioritization mechanisms (and optionally frame pre-emption mechanisms),
only forwards these packets. However, the presence of best-e�ort tra�c and the lack of
additional hardware enhancements in the data plane for isolating the scheduled tra�c
from other classes of tra�c results in a small but bounded jitter for time-triggered
�ows, i.e., the latency bounds guaranteed by TSSDN are slightly relaxed as compared
to the bounds that are achievable using specialized hardware enhancements like the
programmable gating mechanisms in the IEEE 802.1Qbv standard for handling sched-
uled tra�c. We have already discussed the integrated scheduling and routing problem
for static scenarios in TSSDN along with solutions of varying time complexities.

In this chapter, we discuss the dynamic scheduling problem in TSSDN for incrementally
setting up applications in the network, for instance, adding �plug-and-produce� devices
in the production lines [104]. The challenge for incremental set-up of time-triggered
�ows in TSSDN is that disturbances to the existing �ows due to schedule modi�cations
must be avoided, as it may lead to a temporary violation of bounds on the delays or the
jitter with undesirable consequences [105]. Moreover, to be deployable, the solutions
to the dynamic scheduling problem are required to have low execution times (less than
a few seconds), and hence, the existing methods for o�ine/static scheduling cannot
be used directly due to their high runtime in the order of hours. The fact that the
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transmissions in TSSDN are scheduled on the hosts only rather than on the switches
also enables TSSDN to provide lightweight mechanisms to swiftly update schedules
for dynamically changing time-triggered tra�c. However, the lack of information on
�ows that would be needed to set-up in the future makes it hard for computing sched-
ules which are as good as the ones resulting from the corresponding static scheduling
problem where the schedules are computed exploiting a priori information of the time-
triggered �ows.

Our scienti�c contributions to overcome the challenges of dynamic scheduling prob-
lem in TSSDN are manifold. We use the features of OpenFlow to devise methods for
adding/removing time-triggered �ows from the network without a�ecting the already
scheduled �ows. We also formulate the dynamic scheduling problem in TSSDN using
Integer Linear Programs (ILP) and provide heuristics which can be used for approxi-
mating the optimal solutions of the corresponding static scheduling problem. In order
to bring the runtime of our solution under a second, we propose several optimizations
while having minimal e�ects on the quality of the computed solutions in terms of the
number of �ows accommodated in the network.

This chapter is organized as follows. We describe the system model of TSSDN with
respect to the dynamic scheduling problem and concretely de�ne the objective of our
solutions in Section 7.2. The ILP formulations and the relevant heuristics for the in-
cremental scheduling problem is discussed in Section 7.3. We discuss the optimizations
for reducing the runtime of the scheduling approaches to under a second in Section 7.4.
The evaluations and related work are discussed in Section 7.5 and 7.6, respectively.

7.2 System Model & Problem Statement

7.2.1 System Model

The system model for TSSDN is already presented in Section 6.2. In this section,
we present other considerations in TSSDN with respect to the dynamic scheduling of
time-triggered �ows like the update procedure for the transmission schedules.

TSSDN is an SDN-based architecture in which the control plane computes the trans-
mission schedules for time-triggered �ows based on its global view of the data plane
consisting of commodity SDN switches. The scheduling model is based on cyclic sched-
ules implementing a time division multiple access (TDMA) scheme. The transmission
schedule of length equalling the base-period, tbp, is divided into time-slots, each wide
enough for an MTU-sized packet to traverse across the network diameter. The TSSDN
scheduler allocates time-slots to time-triggered �ows such that �ows with overlapping
paths are always assigned di�erent time-slots. For static scenarios, the network con-
troller computes o�ine schedules and updates the �ow tables of the switches for rout-
ing the time-triggered tra�c while also sending the schedule information to the source
hosts of the �ows. However, there are additional steps required to dynamically schedule
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Figure 7.1: Steps involved during incremental scheduling of �ow F1 (H1 → H8) in
TSSDN.

time-triggered �ows in TSSDN for ensuring that the already scheduled �ows are not
a�ected.

The �ow set-up procedure for time-triggered �ows in TSSDN is shown in Figure 7.1.
To schedule an additional �ow (say Flow F1:H1 → H8), the source host (H1) sends a
�ow set-up request containing the �ow speci�cations (the source host, the destination
host(s), the transmission period, etc.) to the network controller in Step 1. In Step 2,
the network controller executes an online scheduling algorithm (focus of this chapter)
to determine if the �ow can be accommodated in the network. If a suitable schedule
(time-slot and route) exists, then the network controller programs the �ow table entries
in the switches for routing the packets belonging to the �ow over the corresponding path
(Step 3). In Step 4, the source host (in this case H1) is informed about the schedule
by the network controller. The source host can then commence their time-triggered
transmissions in Step 5.

The network controller uses exact match semantics for the �ow-table entries, i.e., no
�ow aggregation. Moreover, the network controller uses a transactional interface (avail-
able since OpenFlow v1.4) for this purpose so as to ascertain that the updates are indeed
applied before sending the schedules to the source hosts. This way the controller en-
sures that existing �ows are not a�ected and that the network updates are consistent,
i.e., no loops/blackholes are created in the data plane [106]. A source host requiring to
send multiple packets per cycle must request for a corresponding number of time-slots
in Step 1.

When �ows are no longer required, the source host sends a �ow removal request to
the network controller. Based on the request, the controller updates its �ow database
and removes the corresponding �ow table entries. The freed up time-slots are used for
scheduling new incoming �ows. SDN protocols like OpenFlow may be extended for the
communication between the hosts and the network controller. Overall, the schedule
update procedure is limited to inserting �ow table entries for new �ows and sending
schedule information to the source hosts. Since switches play no role in enforcing
schedules, they need not be recon�gured, resulting in lightweight schedule updates.
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In dynamic scenarios, it may be required to change the base-period of TSSDN, for
instance, due to a new time-triggered �ow with time-period lower than the base-period,
due to exhaustion of the time-slots, or due to sub-optimality of the chosen base-period.
However, modifying the base-period has high coordination overhead as the transition
to the new schedules must be an atomic operation to avoid schedule inconsistencies
between di�erent parts of the network. In particular, reducing the base-period would
result in a reduction in the number of available time-slots. Already allocated time-slots
may cease to exist, requiring a reallocation for the a�ected �ows. The relative di�erence
between the positions of the new and old time-slots in the overall schedule, for instance,
when the time-slot for a �ow is moved from the beginning of the schedule to the end,
introduces jitter during the transition. Moreover, such transitions may also need re-
routing of �ows over paths of lengths di�ering from the initial paths contributing to the
induced jitter. Hence, TSSDN does not allow runtime modi�cations to the base-period,
which is calculated o�ine and remains �xed. For the dynamic scheduling problem, the
base-period is computed using a set of �ows that are expected to be scheduled in the
network using the method described in Section 6.3.2. The computed base-period would
be obviously sub-optimal if �ows not belonging to this expected set are scheduled.

7.2.2 Problem Statement

In the dynamic or online version of this problem, the focus is on computing schedules
faster while approximating the results of the corresponding static scheduling problem.

Our solutions to the dynamic scheduling problem strive to reduce (not bound) set-up
times for time-triggered �ows to sub-seconds by optimizing the scheduling algorithms
only. The minimization of latencies between the hosts, switches, and the network con-
troller is an orthogonal problem, and is out of the scope of this work [107]. Furthermore,
the delays in inserting �ow-table entries in switches is hardware dependent. State-of-
the-art SDN switches insert entries with same priorities in less than 15ms [108], and
hence, do not contribute to the �ow set-up delay signi�cantly for TSSDN.

7.3 Dynamic Scheduling in TSSDN

In the dynamic scheduling problem, �ows are scheduled incrementally as required in
the network. Obviously, scheduling and routing a �ow with no prior knowledge of �ows
that would arrive in the future would yield sub-optimal solutions in comparison to the
corresponding static scheduling problem where all the �ows are known a priori. Hence,
heuristics like the number of hops, number of occupied time-slots on each link, etc.,
are used by the online scheduling algorithms to approximate the solutions generated
by the static scheduling algorithm.

In the following, we restrict the ILP formulations to schedule only one �ow at a time,
i.e., we do not schedule in batches, for two reasons. Firstly, lack of a feasible schedule
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Helper Function Parameters Output

in(n)
n ∈ V {(u, v) ∈ E|v = n}

out(n) {(u, v) ∈ E|u = n}
src(F ) Flow F,

F ≡ (s,D, p)
s

dst(F ) D

Table 7.1: Helper functions for the ILP formulations

for a single �ow will result in the ILP solver not being able to compute schedules for
any of the �ows in the batch. Secondly, we observed in our preliminary evaluations that
the runtime per �ow for the scheduling algorithms increase with the number of �ows
in the batch. The is because the solver must now not only resolve the con�ict between
the �ow being scheduled and the already scheduled �ows but also between all the �ows
belonging to the batch. This implies that the additional runtime for scheduling �ows
in a batch does not overall amortize.

7.3.1 Terminology

The terminologies used for the presented ILP formulations are slightly di�erent from
the ones used in Section 6.3 due to additional parameters that need to be modelled
here. Hence, we repeat the terminology and notations used in the ILP formulations of
this chapter for the sake of better comprehension.

The network topology is modelled as a directed graph G ≡ (V , E). Here, V is the set
of nodes and E ≡ {(i, j)| i, j ∈ V and i, j are connected by a network link} is a set of
tuples representing the network links. Further, V ≡ (SW ∪H), where SW and H are
sets of switches and hosts, respectively. A time-triggered �ow is denoted as a tuple, F
≡ (s,D, p), where s ∈ H, D ⊆ H, and p ∈ Z+. Here, s is the source, D is the set of
destinations of the �ow, and p denotes the transmission period of the �ow. Thus, we
model time-triggered �ows as multicast �ows. The set of time-slots for scheduling is
denoted as T ≡ {0, 1 . . . , tmax}.

Additional functions needed to represent the topology and the �ows are listed in Ta-
ble 7.1.

7.3.2 Shortest Available Path (D/SAP)

The objective of this ILP is to minimize the number of links over which a �ow is

routed while allocating a time-slot for it during which all the constituting links are
unoccupied. This results in a larger number of free links during the corresponding
time-slot for future �ows.
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ILP Inputs

The inputs for D/SAP are:

• Network topology as Directed Graph, G ≡ (V,E).

• Set of time-slots, T . T ≡ {0, 1, . . . , tmax}.

• Speci�cation of the �ow to be set-up, F ≡ (s,D, p).

• Existing Schedules, ES.
ES ≡ {esi,j}; ∀ i ∈ E, ∀ j ∈ T .
esi,j = 1, if any scheduled �ow traverses link i at time-slot j, else 0.

ILP Variables

The variables for D/SAP are:

• Link Occupancy, LO. This indicates the set of links over which the �ow F must
be routed. LO ≡ {loi}; ∀ i ∈ E.
loi = 1, if �ow F is routed over link i, else 0.

• Destination Count, DC. This indicates the number of destinations of �ow F

reachable over a given link i if the �ow is routed over it. DC ≡ {dci}; ∀ i ∈ E.
dci = number of �ow destinations that may be reached over link i if �ow F is
routed over i, else 0.

• Slot Occupancy, SO. This indicates the time-slot that must be allocated to �ow
F. SO ≡ {soj}; ∀ j ∈ T .
soj = 1, if the �ow is allocated slot j, else 0.

• Auxiliary variables, A. These variables enable the formulation of the scheduling
problem using linear constraints.
A ≡ {ai,j}; ∀ i ∈ E, ∀ j ∈ T .
ai,j = 1, if �ow F is routed over link i and allocated slot j, else 0.

Objective Function

The objective function for D/SAP minimizes the number of links used for routing the
�ow.

Minimize
∑
∀i ∈ E

loi (7.1)
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Constraints

The constraints for D/SAP are as follows:

• Time-slot constraint : Flow F shall be allocated exactly one time-slot.∑
∀j ∈ T

soj = 1 (7.2)

• Routing constraint : The route for �ow F starts at the source host and ends at the
destination host(s), i.e., the number of destinations reachable over the outgoing
links of the source host is equal to the number of destinations of the �ow, while
the number of destinations reachable over the incoming links of the destination
hosts is 1. For all the other nodes in graph G, the sum of destinations reachable
over incoming links is equal to the sum of destinations reachable over outgoing
links. ∑

∀i ∈ in(s)

dci = 0
∑

∀i ∈ out(s)

dci = |D|∑
∀i ∈ in(n)

dci = 1
∑

∀i ∈ out(n)

dci = 0 ∀ n ∈ D
(7.3)

∑
∀i ∈ in(n)

dci =
∑

∀i ∈ out(n)

dci ∀ n ∈ V \ ({s} ∪D) (7.4)

• Collision avoidance constraint : Flow F must be routed and allocated a time-
slot such that all network links are occupied by at most one �ow at any given
time-slot.

ai,j + esi,j ≤ 1 ∀ i ∈ E, ∀ j ∈ T (7.5)

• Auxiliary constraints : For consistency among the ILP variables, the following
constraint is required:

ai,j = loi × soj ∀ i ∈ E,∀ j ∈ T (7.6)

This non-linear constraint is modelled by the following set of linear constraints:

ai,j ≤ loi

ai,j ≤ soj

ai,j ≥ loi + soj − 1

 ∀ i ∈ E, ∀ j ∈ T (7.7)

Additionally, the following constraint is required to model the relation between
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DC and LO. For a link i, dci > 0 implies the link is used for routing, i.e., loi = 1.

loi × |D| ≥ dci ∀ i ∈ E (7.8)

A feasible solution to this ILP provides a suitable schedule for �ow F. The values of
LO and SO determine the allocated time-slot and route, respectively. In absence of a
feasible solution, �ow F cannot be accommodated in the network.

7.3.3 Mini-max (D/MM)

Solely minimizing the number of links for routing a �ow may result in some scenarios
in formation of bottleneck links which are occupied during all time-slots. The second
approach for online scheduling, Mini-max (D/MM), aims to distribute spare capacity
over all links in the network to improve the prospects of successfully accommodating
any future �ow at the cost of routing some �ows over longer paths. This ILP builds
on the formulation of D/SAP by modifying its objective and adding a constraint.
An additional decision variable, MaxSlots, is also added. This variable de�nes the
maximum number of time-slots during which any of the network links may be occupied.
Thus, MaxSlots ∈ Z+.

Here, the primary objective is the minimization of the maximum number of time-slots

during which any of the network links may be occupied. Hence the name mini-max. The
secondary objective minimizes the number of links over which the �ow is routed to weed
out undesirable solutions that route the �ow being scheduled over paths containing
loops.

Minimize MaxSlots︸ ︷︷ ︸
Primary Objective

+
1

|E|+ 1
×

∑
∀i ∈ E

li︸ ︷︷ ︸
Secondary Objective

(7.9)

The additional constraint in D/MM compared to D/SAP does not allow any net-
work link to be occupied for number of time-slots exceeding MaxSlots, which is being
minimized. ∑

∀j ∈ T

esi,j + loi ≤ MaxSlots ∀ i ∈ E (7.10)

Similar to D/SAP, LO and SO determine the route of the �ow and the allocated
time-slot, respectively.

7.3.4 Dynamic Scheduling of Flows With Di�erent Periods

The presented approaches assume that the transmission periods for all �ows equal the
base-period. One time-slot is allocated to each of the �ows irrespective of their indi-
vidual transmission period. It is, however, bene�cial to also appropriately handle �ows
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Figure 7.2: Phasing of �ows F1, F2 with periods 2 · bp

which have transmission periods higher than the base-period in the dynamic scheduling
problem. To avoid over-allocation of capacity, �ows with equal transmission periods
can be phased, i.e., for every �ow being scheduled a phase is allocated along with a
time-slot, i.e., a 〈time-slot, phase〉 pair is allocated. Phase indicates the validity of
the time-slot during a given cycle of the schedule. A �ow can utilize its allocated
time-slot only if the allocated phase matches the corresponding cycle of the schedule.
Two �ows with equal transmission periods can be allocated the same time-slot despite
traversing overlapping paths so long as they are allocated di�erent phases, thus, en-
suring temporal isolation for the �ows. For instance, in Figure 7.2, �ows F1 and F2

with transmission periods of 2 · bp traversing over overlapping paths can use the same
time-slot but in alternate cycles; Flow F1 uses the time-slot during Phase 0, while �ow
F2 uses it during Phase 1.

The total number of phases available for allocation on a link for a given time-slot
depends on the �rst �ow that acquires this time-slot and is routed to traverse the link.
If a �ow with transmission period n · bp is routed to traverse over link li at time-slot tj ,
then n phases ([0, . . . , n− 1]) are available on the (li, tj) pair. A subsequent �ow with
period n · bp can use time-slot tj despite traversing link li provided that it is allocated
a phase di�erent from all the preceding �ows.

The presented ILP formulations for the dynamic scheduling problem, D/SAP and
D/MM, schedule �ows over the set of time-slots, T , allocating one time-slot for each
�ow. To use phasing, it must also allocate a phase to each of the �ows. For this, an
additional input is provided to the ILP formulation, namely the number of available
phases, P ≡ {0, . . . , n − 1}, where n · bp is the period of the �ow being scheduled.
The ILP formulations must schedule over (T × P ) instead of T and thus allocate a
〈time-slot, phase〉 pair for each �ow being scheduled. To this end, all references to T
in the ILPs�D/SAP and D/MM�are replaced with (T × P ).

Additionally, the input Existing Schedules, ES, in the ILP formulations is rede�ned
as ES ≡ {esi,(j,k)}; ∀i ∈ E, ∀〈j, k〉 ∈ (T × P ). Here, esi,(j,k) = 0, when no �ow is
scheduled to traverse link i at time-slot j or the transmission period of the �ow being
scheduled is equal to the periods of �ows traversing link i at time-slot j, and none of
these �ows are allocated phase k. In all other cases, esi,(j,k) = 1.

99



7 Incremental Scheduling and Routing in TSSDN

With these modi�cations, D/SAP and D/MM compute not only a time-slot but also a
phase for the �ow being scheduled along with the route for the �ow, and thus, handle
�ows with di�erent transmission periods.

7.4 Optimizations for Dynamic Scheduling

Approaches

The presented approaches for dynamic scheduling, D/SAP and D/MM, have compu-
tational runtime in the order of several seconds (cf. Section 7.5). The runtime mainly
depends on the size of the topology (|E|, |V |), the number of available time-slots (|T |),
and the number of phases considered for scheduling (|P |). The following optimizations
are introduced to reduce the execution time to sub-second range.

Topology Pruning

With topology pruning, the ILPs consider only a subset of the network topology, G′ ≡
(V ′, E′), where V ′ ⊆ V and E′ ⊆ E, for scheduling. To this end, the topology is pruned
to remove network links along with nodes that do not play any role in routing a given
�ow, F ≡ (s,D, p).

It may be observed that not all edge links (links connecting end systems to the network)
play a role in routing �ows. Only those edge links are used that connect the source and
destination hosts of the �ow with the network. The others may be removed without any
impact on the computed solutions. Thus, the pruned topology is de�ned as follows:

• V ′ ≡ SW ∪ {s} ∪D, where SW is set of switches.

• E′ ≡ {(n1, n2) | (n1, n2) ∈ E;
(n1, n2 ∈ SW ) ∨ (n1 = s) ∨ (n2 ∈ D)}.

Time-slot Slicing

Another factor that a�ects the computational runtime is the number of time-slots and
phases over which the �ow is to be scheduled. To reduce the execution time, only a
subset of 〈time-slot, phase〉 pairs referred to as time-slot slice, TP ⊆ (T × P ), may be
considered.

Use of time-slot slicing may lead to sub-optimal solutions (longer paths in case of
D/SAP or paths resulting in bottleneck links in case of D/MM ) leading to fewer �ows
being accommodated overall. Worse, this may also introduce false-negatives, i.e., the
scheduler is unable to allocate a suitable 〈time-slot, phase〉 pair and corresponding
route for the �ow as all the possible solutions lie in (T ×P )\ TP. It is thus imperative
that TP is constructed such that the resulting sub-optimality and number of false-
negatives are minimized. For this, the number of unoccupied core links (links between
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two switches) during a given 〈time-slot, phase〉 pair is used as a heuristic to generate TP
from (T×P ). A higher number of unoccupied core links during a 〈time-slot, phase〉 pair
improves the prospects of yielding a solution to the scheduling problem. For instance,
if all core links are unoccupied during a 〈time-slot, phase〉 pair, it is certain that the
optimal solution will be available, provided that the necessary edge links (connecting
source and destinations of the �ows to the network) are also unoccupied during the
corresponding 〈time-slot, phase〉 pair.

Algorithm 5 Generate time-slot slice, TP

1: function GenerateTP(T , P , G, SliceSize, Schedule)
2: TP ← φ . List of time-slot, phase pairs
3:

4: for t in T do

5: for ph in P do

6: freeCoreLinks(G, Schedule, 〈t, ph〉) . Compute free core links at 〈t, ph〉
7: end for

8: TP.append((t, getBestPhase()))
9: end for

10: TP ← sort(TP) . Sort TP based on number of available core links
11:

12: return TP [0 : SliceSize]
13: end function

Using the aforementioned heuristic, a time-slot slice, TP, of size SliceSize can be com-
puted for scheduling as shown in Algorithm 5. The algorithm computes the heuristic
for all 〈t, ph〉 ∈ (T × P ) (Line 6). For each t ∈ T , a phase, ph, that provides the best
chance for the scheduler to compute the optimal solution is short-listed (Line 8). Phase
ph provides the maximum number of unoccupied core links during the corresponding
time-slot, t. Further, during 〈t, ph〉, all the edge links required for routing the particu-
lar �ow, i.e., the links connecting the source and destination hosts to the network, must
also be unoccupied. From all the short-listed 〈t, ph〉 pairs, the best SliceSize number
of pairs in terms of the computed heuristic form the time-slot slice (Lines 10�12).

Here, the parameter SliceSize determines the execution time for scheduling along with
the introduced sub-optimality and false-negatives. Low values of SliceSize result in
lower execution time, but at the cost of an increased number of sub-optimally routed
�ows and a higher number of false-negatives. To reduce false-negatives, scheduling can
be reattempted with an increased value of SliceSize. In such cases, those 〈time-slot,
phase〉 pairs that did not yield any solution in the previous attempts must be excluded.
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Together with topology pruning, time-slot slicing realises sub-second runtime for the
dynamic scheduling algorithms in TSSDN.

7.5 Evaluations

(a) Relative Quality to S/UR (b) Runtime vs. No. of Slots

(c) Runtime vs. No. of Links (d) Runtime vs. Period of �ow

Figure 7.3: Evaluations Results for the ILP formulations presented in Section 7.3

This section presents the results of the evaluations for the dynamic scheduling ap-
proaches in TSSDN. The evaluations are mainly focussed on the computational time
and quality of the dynamic scheduling approaches in comparison to the static scheduling
approaches in TSSDN. Hence, we extend the evaluations from Chapter 6 with graphs
for dynamic approaches. For evaluations on the interactions between the data plane and
the control plane in SDN and the latencies incurred in insertion and deletion of �ow-
table entries in switches, we refer the reader to existing literature [108] [109] [110].
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The evaluations use CPLEX(v 12.5) [63], a commercial ILP solver from IBM, for com-
puting the schedules and routes by solving the presented ILPs. The ILPs were speci�ed
using PuLP [89], a Python-based tool-kit to specify ILPs. The scheduling approaches
were evaluated against a range of network topologies (various sizes and network mod-
els) created using NetworkX, a Python library for creating complex networks. In detail,
topologies were created using the Erd®s-Rényi (ER) model [60], random regular graphs
(RRG), the Barabási-Albert (BA) model [61], and the Waxman model [90]. Altogether,
these graph models comprehensively test the scheduling approaches. The sizes of the
topologies, the number of time-slots, and the �ows used as input are speci�ed with the
concrete evaluations.

7.5.1 Qualitative Comparison

For a given set of �ows with transmission period equal to the base-period, S/UR yields
the best schedule in terms of the number of scheduled �ows. Hence, S/UR is used as
benchmark for comparing the scheduling approaches.

For comparison, evaluations were carried out in 160 scenarios created using 8 di�erent
topologies (3 RRG, 2 ER and 3 BA), each consisting of 20�110 unicast �ows whose
transmission periods were equal to the base-period. These �ows were scheduled over 3�5
time-slots. The high runtime of S/UR restricted the evaluations to small scenarios only.
The �ow schedules were calculated using all the presented approaches in each of the
scenarios. For the static scheduling approaches, all �ows were collectively considered,
while for the dynamic scheduling approaches, the �ows were considered one at a time

in a random order. As evaluation metric, the relative quality of the approach was
determined with respect to S/UR, i.e., the ratio of number of �ows scheduled by the
approach to the number of �ows scheduled using S/UR.

The cumulative distribution of the relative quality for the evaluated scenarios is pre-
sented in Figure 7.3a. As expected, the static scheduling approaches yield better rel-
ative quality compared to the dynamic scheduling approaches. Overall, the solutions
generated by S/FR and S/PR have average relative qualities of 99% and 97% respec-
tively, as against 89% and 88% for D/SAP and D/MM respectively. Further, D/SAP
and D/MM result in solutions with relative qualities of at least 72% and 64% or bet-
ter, respectively. On an average, the dynamic scheduling approaches produce solutions
with a relative quality of 88% compared to the S/UR. It is thus imperative to ensure
that the optimizations to reduce the runtime of the dynamic scheduling approaches do
not degrade their quality further.

It is also worth to note that the evaluations show D/SAP to be slightly better than
D/MM. Of the 160 evaluation scenarios, D/MM outperformed D/SAP in 30 scenarios
with respect to the number of scheduled �ows, D/SAP was better than D/MM in 49
scenarios, while in 81 scenarios both of them scheduled an equal number of �ows. The
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is because D/MM occasionally routes �ows over longer paths resulting in consumption
of time-slots over a higher number of links.

7.5.2 Execution Time

The execution time of the scheduling approaches is mainly a�ected by the topology
size and the number of available time-slots for scheduling. The evaluation results
detailing the impacts of these parameters on the execution time, based on evaluations
on a machine with Intel Xeon E5-1650 processor (2 × 6 cores) and 16GB RAM, is
presented in Figure 7.3.

The impact of the number of available time-slots on the execution time (amortized
over one �ow) for all the scheduling approaches, dynamic as well as static, is shown
in Figure 7.3b. The �gure shows the time to schedule 300 �ows with periods equal to
the base-period on a Waxman topology (256 network links) for a varying number of
time-slots (5�50). The results show that the runtime of S/PR increase rapidly with
the number of available time-slots, requiring about 25 sec per �ow with 50 time-slots.
S/FR requires less than 4 sec per �ow for scheduling with 50 time-slots. In comparison,
the dynamic scheduling approaches without the proposed optimizations require over
80 sec to schedule a �ow. However, with optimizations the approaches could determine
the schedule in less than a second.

To evaluate the e�ect of the network size, we measured the runtime for scheduling
over 100 �ows on topologies of di�erent sizes (30�256 network links). The results
(Figure 7.3c) show a trend similar to the results with varying time-slots. The static
scheduling approaches fare better than the dynamic scheduling approaches (without
the proposed optimizations) with an amortized cost of 12 sec for S/PR to schedule
a �ow. The evaluations also show that the runtime of S/PR is dependent on the
number of paths available for routing, i.e., the path diversity in the network. On
the other hand, the runtime of dynamic scheduling approaches without optimization
increases steeply with the size of the topology, with about 75 sec runtime to schedule one
�ow for a topology with 256 links. Clearly, the raw ILPs are not practical for online
scheduling without further optimizations. The evaluations show that the execution
times of D/SAP and D/MM are similar. Further, the execution time is independent
of the type of the �ow(s) being scheduled, unicast or multicast. In case of multicast
�ows, the number of destinations also do not have an impact on the execution time.

The dynamic scheduling approaches are also a�ected by the transmission period of the
�ow being scheduled. Due to use of phasing, �ows with larger transmission periods
have more options to be accommodated in the network schedule. Figure 7.3d shows
the impact that this has on the runtime (along with their standard deviations) to
schedule 100 �ow incrementally on an ER topology (150 links). In absence of time-slot
slicing, �ows with larger transmission periods resulted in longer execution time with an
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increasing standard deviation. With time-slot slicing, the transmission period ceases
to have an e�ect on the execution time which is then achieved in sub-seconds.

7.5.3 Impact of Optimizations on Dynamic Scheduling

(a) Impact of Topology Trimming (b) Time-slot slicing

(c) Slice size vs. Sub-optimality (d) No. of attempts vs. False-negatives

Figure 7.4: Evaluations of the impact of the optimization

We presented two optimizations for reducing the execution time of the dynamic schedul-
ing approaches. The �rst of them is topology pruning to remove unnecessary edge
links. To evaluate its impact, the execution time for scheduling �ows using D/SAP

and D/MM on several topologies (RRG, ER, BA) was measured with and without
topology pruning. As shown in Figure 7.4a, with an increasing proportion of edge
links in the network, the reduction of runtime achievable also increases substantially.
For instance, in a network with over 75% edge links, topology pruning results in 86%
reduction of execution time for the scheduler, from 7.4 s to 1 s. However, in realistic
production networks, the proportion of edge links is lower as multiple redundant links
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are required between switches for improving fault tolerance of the network. For in-
stance, in a fat-tree topology (found in data-centers), only 33% of the total network
links are edge links. Here, topology pruning provides about 45% reduction in execution
time.

While topology pruning is qualitatively non-destructive, time-slot slicing may result
in sub-optimal schedules or generates false-negatives. It is, thus, not straightforward
to evaluate the impact of time-slot slicing. For this, 10000 time-triggered �ows were
scheduled on an ER topology (500 hosts and 20 switches with 131 core links) over 50
time-slots. For each of these �ows, the schedule was computed with and without time-
slot slicing (using D/SAP and topology pruning) to evaluate its impact on optimality
of the computed schedules and determine false-negatives. Figures 7.4b�7.4d summarize
the results of this evaluation. Figure 7.4b shows that the execution time of the scheduler
increases linearly with the size of the time-slot slice with runtimes lower than 1 s for
slice sizes less than 5. However, the number of �ows scheduled in the network do not
commensurately increase with it. The evaluations also show that the achieved reduction
in the number of generated false-negatives and sub-optimal solutions is not substantial
with an increase in the size of time-slot slices beyond a certain degree (cf. Figures 7.4c
and 7.4d). Overall, with a slice size of just 3�5 time-slots, sub-second set-up time is

achieved for scheduling �ows. Of the total scheduled �ows, only 906 and 595 �ows
were sub-optimally routed with slice size of 3 and 5, respectively. Further, the number
of generated false-negatives also reduced substantially by reattempting to schedule the
�ow using the next best time-slot slice, in this case, from 709 to 106 by allowing just
two additional attempts to schedule the �ow in case a suitable schedule could not be
computed. After deploying the optimizations (topology pruning and time-slot slicing
with a time-slice size of 5 with up to 3 scheduling reattempts), the overall number of
�ows scheduled in the network decreases by less than 4% only.

7.5.4 Evaluation Summary

Overall, the evaluations show that

1. S/UR yields the best schedules in terms of the number of �ows scheduled for
TSSDN and serves as a benchmark for other heuristic solutions for static as well
as dynamic scheduling problem.

2. The dynamic scheduling approaches, D/SAP and D/MM, with optimizations can
compute online schedules for time-triggered �ows in sub-seconds.

7.6 Related Work

The development of software-de�ned networking was mainly driven by the need of
managing dynamic communication networks. While the control plane can modify the
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data plane in a live network through OpenFlow, using these capabilities naively may
potentially lead to inconsistent network states and problems like blackholes, loops, etc.,
in the network. Several approaches were proposed to solve the problem of inconsistent
network updates. Reitblatt et al. proposed usage of VLAN tags to version �ow table
rules to provide per-packet or per-�ow consistency [43]. Another approach was to route
tra�c over the control plane during the transition period [111]. Jin et al. designed
Dionysus, a framework for dynamically scheduling network updates after resolving con-
�icts to enable faster completion of the updates [112]. We have used the transactional
semantics in OpenFlow for avoiding inconsistent network updates. Interestingly, while
the problem of updating routes in the network dynamically is well addressed, dynamic
updation of schedules for time-sensitive tra�c is still not completely solved.

There are a few SDN-based approaches which do consider the timing/bandwidth re-
quirements while admitting them into the network. Danielis et al. present an SDN-
based approach to migrate routes of �ows to avoid congestion based on the results of a
polynomial time algorithm [113]. Hedera, data center networks with multi rooted tree
topologies, also use SDN to modify paths of data center �ows based on fast heuristics
while delivering bisection bandwidth of the network [114]. Gre� et al. present an online
�ow admission control and routing algorithms based on SDN where the switch ports
are based on credit-based weighted round robin scheme [115].

In contrast to these approaches, in TSSDN, we developed online algorithms for time-
triggered �ows along with mechanisms for dynamically adding/removing �ows.

7.7 Summary

This chapter presented mechanisms for inserting and removing time-triggered �ows in
TSSDN, an SDN-based architecture, without a�ecting already scheduled �ows. We
also formulated the dynamic scheduling problem in TSSDN and presented algorithms
using integer linear programming for computing schedules and routes for �ows incre-
mentally. Overall, TSSDN achieves sub-second set-up times for scheduling arbitrary
time-triggered �ows dynamically on account of the fast online scheduling algorithms
and lightweight mechanisms for updating schedules.
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CHAPTER 8

SPATIAL MULTIPLEXING IN UNSYNCHRONIZED

NETWORKS

8.1 Introduction

In this chapter, we look at networks where neither the hosts are synchronized nor are
the switches equipped with specialized hardware enhancements for scheduling trans-
missions. Such cases can arise in legacy networks with end systems equipped with
network interfaces which are not capable of time-stamping packets for the purpose of
clock synchronization. In such networks, scheduling of time-triggered �ows cannot be
enforced by any network participant, and hence, spatial isolation by routing remains
the only means for isolating the time-triggered tra�c from other tra�c classes.

It may be recollected that to achieve deterministic and bounded end-to-end latency
and jitter for time-triggered tra�c, we seek to eliminate the in-network queuing delays
that the packet belonging to these �ows incur. To this end, in the networks where
transmission scheduling is not a feasible option, network links can be exclusively al-
located to the time-triggered �ows by routing them over edge disjoint paths. These
�ows would naturally share the allocated links with best-e�ort tra�c but with no
other time-triggered �ows. Furthermore, we use in-network prioritization to separate
the time-triggered tra�c in the network links from best-e�ort tra�c, i.e., packets of
the time-triggered �ows can be tagged as high priority tra�c, while all other packets
have lower priorities. This ensures that the forwarding of high-priority time-triggered
tra�c is always expedited in the network. The best-e�ort tra�c in transit may de-
lay the time-triggered �ows, however, like in TSSDN (cf. Chapter 6) this delay is
restricted to the time-required to transmit an MTU-sized packet over the link. This
delay can be further reduced by means of frame pre-emption mechanisms speci�ed in
the IEEE 802.1Qbu standard [45].
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While we can use the routing capabilities available using OpenFlow for spatially iso-
lating time-triggered �ows, the question remains on how to compute routes for time-
triggered �ows. Ideally, we would like to maximize the number of time-triggered �ows
accommodated in the network. Given a set of source destination pairs in the net-
work, the problem of maximizing the number of �ows which can be accommodated
in the network while traversing over edge disjoint paths is proven to be an NP-hard
problem [116]. Heuristics to solve this problem have already been presented in [117].
However, we propose routing of time-triggered �ows not with the aim of maximising
the number of time-triggered �ows in the production network, but rather to maximize
the number of cyber-physical systems (CPS) which rely on these time-triggered �ows.
Generally, CPS require varying numbers of time-triggered �ows between its compo-
nents (sensors, actuators, controller etc.) based on the type of production processes
it implements and the number of components it has on the shop �oor. For instance,
CPS responsible for open-loop production processes typically require lower number of
time-triggered �ows compared to the ones responsible for closed-loop production pro-
cesses. The number of time-triggered �ows that can be accommodated in the network
by routing over edge disjoint paths is very limited. Hence, we strive to maximize the
number of cyber-physical systems supported in the network, as it also implies a higher
number of manufacturing applications in the shop�oor.

This chapter is structured as follows. We present the system model and problem state-
ment for routing of time-triggered �ows in an unsynchronized network in Section 8.2.
Our solutions to this routing problem is presented in Section 8.3. We present the eval-
uations and a brief discussion on our approach in Section 8.4 and 8.5, respectively,
before concluding.

8.2 System Model & Problem Statement

8.2.1 System Model

We assume a system model similar to the one of TSSDN, presented in Chapter 6.2, with
a centralized control plane con�guring the network data plane for the time-triggered
�ows.

The major di�erence to TSSDN is that we relax the requirement for having synchro-
nized clocks at the end systems. This also implies that control plane computes only
routes and not schedules for the time-triggered �ows. Based on the computed routes,
the control plane con�gures the data plane using the OpenFlow protocol. Further-
more, the lack of scheduling also implies that no issues arise with respect to schedule
adherence from the point of view of the end systems. However, to avoid jitter in the
network stack of the end systems, we still use userspace packet processing framework
for deterministic latency in the network stack like in Chapter 6.
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8.2.2 Problem Statement

Our routing approach allocates edge disjoint paths to the time-triggered �ows while
seeking to maximise the number of CPS so realised. Edge-disjoint paths avoid the
problem of competing �ows along any path, thus, eliminating the problem of network
congestion and high queueing delay. Note that we do not strive to allocate several
�ows to the same link. Although this could further increase throughput and number of
supported CPS, it requires more complex solutions including scheduling mechanisms
at switches, presented in Chapters 4 and 6.

Merely maximising the number of realised CPS raises fairness issues for those requiring
higher number of �ows. We can mitigate this issue by allocating weights to each CPS
based on their importance and then maximise the sum of weights for the set of realised
CPS. While our algorithms can be easily extended for this, it is currently out of the
scope for this chapter.

8.3 Routing Time-triggered Communication Flows

In this section, we present our solutions for routing of time-triggered communication
�ows constituting CPS in a manufacturing shop-�oor over unsynchronized networks.
First, we introduce a basic algorithm for computing the routes for the time-triggered
�ows, and then present a pair of heuristics to guide this basic algorithm towards im-
proved solutions.

8.3.1 Terminology

In our system model, we address the underlying network for the CPS along with the
time-triggered communication �ows on which they rely. The network is modelled as
a directed graph, G ≡ (V,E), where V is the set of network nodes and E is the set
of edges representing the network links connecting the nodes. Further, V ≡ S ∪ H,
where S is the set of network switches and H is the set of hosts in the network. Also,
E ⊆ V × V such that if (v1, v2) ∈ E, then (v2, v1) ∈ E. This models the full-duplex
nature of switched Ethernet networks.

CPSSet represents the set of target CPS required for implementing the production
processes in the shop �oor. For cps ∈ CPSSet, cps = {(hi, hj) | hi, hj ∈ H}, i.e., a
cyber-physical system is described as a set of tuples, each containing a pair of hosts �
the source host and the destination host for a time-triggered �ow.

We refer to a CPS as �realised� if the used routing algorithm assigns network paths
for all its time-triggered �ows. We model the solution to this routing problem of time-
triggered �ows as a tuple � (CPSSeq, FlowSeqMap). CPSSeq is a sequence of
the target CPS, CPSSeq ≡ [cps1, cps2, . . . cpsn]. While, FlowSeqMap is a map that
gives the sequence of the �ows corresponding to a CPS. i.e., FlowSeqMap[cpsi] ≡
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[fi,1, fi,2, . . . fi,j ], where fi,j is the jth �ow of system cpsi. Further, we de�ne the �tness
(quality) of a given solution as the number of CPS that are realised by the basic routing
algorithm described below.

8.3.2 Calculating Edge Disjoint Routes for Time-triggered

Flows

Given a graph G along with a set T ≡ {(s1, d1), (s2, d2), . . . (sn, dn)} containing pairs
of hosts in the networks, the problem of maximising the number of pairs to which edge
disjoint paths can be allocated is known as the maximum edge disjoint paths (MEDP)
problem. This well-known problem is NP-Hard and requires heuristic approaches for
�nding solutions that are close to the optimal ones.

Our problem formulation takes the maximum edge disjoint paths problem a step fur-
ther. Instead of maximising the number of �ows for which edge disjoint paths can be
allocated, we seek to maximise the number of CPS that are realised as a result. Our
problem however reduces to the MEDP problem, if all the CPS in CPSSet consist of
only one time-triggered �ow.

Algorithm 6 Basic algorithm to route time-triggered �ows

Require: Graph G, Solution (CPSSeq, FlowSeqMap)
1: Routes← { }
2: for cps in CPSSeq do
3: for flow in FlowSeqMap[cps] do
4: flowPath← Dijkstra(G, flow.src, f low.dst)
5: if flowPath != NULL then

6: Routes[flow] ← flowPath

7: G.edges← G.edges− flowPath
8: else

9: deallocate all the assigned �ows of cps
10: add corresponding links back to G
11: end if

12: end for

13: end for

14: return Routes

Algorithm 6 describes the basic routing algorithm to allocate edge disjoint paths to
the time-triggered �ows based on an input solution described by the tuple (CPSSeq,
FlowSeqMap).
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The algorithm realises the CPS as per the order dictated by the CPSSeq (Line 2).
For realising a CPS, the algorithm calculates and allocates routes to all its �ows in the
order de�ned by the map FlowSeqMap indexed by the corresponding CPS (Line 3).
The routes for the �ows are determined by executing Dijkstra's algorithm (described
in [79]) on graph G (Line 4). To ensure that a network link is not allocated to multiple
�ows, we remove the corresponding edge from the graph G when it is allocated to a
�ow (Line 7). If no route can be found for some �ow, then the corresponding CPS
cannot be realised. It is then futile to allocate the expensive network resources for
its other �ows for which perhaps routes were already computed. Hence, we deallocate
such �ows and return the respective network links to the graph G (Line 9�10).

The �tness of a solution with this basic algorithm depends on the ordering of the CPS
in CPSSeq and the corresponding ordering of �ows in FlowSeqMap. In the follow-
ing, we improve the basic algorithm to derive a greedy algorithm (heuristic approach)
and a genetic algorithm (meta-heuristic approach) that generate better solutions, i.e.,
increase the number of realised CPS.

Greedy Algorithm

In the greedy algorithm, we generate a few candidate solutions heuristically and then
select the best one from them. This algorithm takes four inputs: i) G, the network
graph, ii) CPSSet, the set of target CPS, iii) MaxSolns, the number of candidate
solutions to be considered, iv) FlowSeqMap, a map that gives the initial ordering of
the �ows corresponding to a CPS.

In the greedy algorithm, described in Algorithm 7, we use the number of �ows required
to realise a CPS as the heuristic. We create di�erent sequences of target CPS in which
they are sorted in an ascending order of the number of constituent �ows, i.e., CPSSeqi,
where i ≡ {1, 2, . . .MaxSolns}. Each of these sequences is combined with the default
ordering of �ows given by FlowSeqMap to generate MaxSolns candidate solutions,
i.e., (CPSSeqi, FlowSeqMap). To allow these candidate solutions to vary signi�cantly,
we generated CPSSeqi by randomly shu�ing the set of target CPS, CPSSet, and
then executing a sorting process (Line 4). Since we used a stable sort, the relative
order of the CPS before sort is maintained after sort as well. We select the best of
the candidate solutions after evaluating their individual �tness (Line 7�13). Function
calculate_�tness() (Lines 8) (essentially similar to the Algorithm 6) tracks and returns
the number of CPS realised by the solution using the basic routing algorithm.

The greedy algorithm uses the default ordering of �ows, as given in the FlowSeqMap,
due to lack of reliable heuristics for ordering the �ows of a particular CPS for routing.
To explore the solution space e�ectively, we developed a meta-heuristic approach using
a genetic algorithm that also varies the ordering of �ows in FlowSeqMap.
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Algorithm 7 Greedy algorithm for maximising the number of realised CPS
Require: Graph G, Set of CPS CPSSet, Flow Sequence Map FlowSeqMap, No. of

candidate solns MaxSolns,
1: CandidateSolutions← [ ]

2: BestSolution← NULL; BestSolnF itness← 0

3: for i = 0 to MaxSolns do

4: CPSSeq ← stable_sort(shu�e(CPSSet))
5: CandidateSolutions.add((CPSSeq, F lowSeqMap))

6: end for

7: for Soln in CandidateSolutions do
8: SolnF itness← calculate_�tness(G, soln)
9: if SolnF itness > BestSolnF itness then

10: BestSolnF itness← SolnF itness

11: BestSolution← Soln

12: end if

13: end for

14: return BestSolution

Genetic Algorithm

Typically, the �rst step in genetic algorithms is to generate a set of candidate solutions,
known as the population. The quality (�tness) of the population is then iteratively
improved by execution of three genetic operators � Selection, Cross-over and Mutation.
The genetic algorithm described in Algorithm 8 needs an additional input as compared
to the greedy algorithm: MaxIterations, the number of iterations/generations for
which the candidate solutions are allowed to evolve.

We generated the initial population using the method similar to the one used in the
Greedy Algorithm, i.e., using stable sort after random shu�ing of CPSSet (Line 3).
Additionally, we randomly shu�ed the ordering of �ows in FlowSeqMap correspond-
ing to every CPS (Lines 4�6) for each candidate solution. Further, we improved the
calculation of solution �tness to break ties between candidates that realise an equal
number of CPS. In such cases, the �tness calculation procedure takes into account the
number of �ows set up for breaking the tie. The higher the number of �ows set up, the
better the solution.

With each iteration, the population evolves with improving quality of solutions. In
each iteration, three genetic operators (Lines 9�13) are applied on the population:

1. Selection is responsible for selecting the candidate solutions from the current gen-
eration that contribute towards the candidate solutions for the next generation.
We used roulette wheel selection mechanism for this operator [118]. With this
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Algorithm 8 Genetic algorithm for maximising the number of realised CPS
Require: Graph G, Set of CPS CPSSet, Flow Sequence Map FlowSeqMap, No. of

candidate solns MaxSolns, No. of iterations MaxIterations,
1: Population← [ ]

2: for i = 0 to MaxSolns do

3: CPSSeq ← stable_sort(shu�e(CPSSet))
4: for cs in CPSSet do
5: FlowSeqMap[cs] = shu�e(FlowSeqMap[cs])
6: end for

7: Population.add((CPSSeq, F lowSeqMap))

8: end for

9: for i = 0 to MaxIterations do

10: SelectPopulation← selection(G, Population)
11: NextGeneration← crossover(SelectPopulation)
12: Population← mutate(NextGenPopulation)
13: end for

14: return �ttest(Population)

method, candidate solutions with higher �tness have a higher probability of mak-
ing the cut while solutions with lower �tness head for extinction. This operator,
hence, needs graph G as input for calculating the �tness of the population.

2. Cross-over combines two �selected� candidate solutions of the current genera-
tion to generate two solutions for the next generation. This operation must be
carefully designed to ensure that the candidate solutions for the next generation
have a high probability of improving over their parents from the current gen-
eration. We used a uniform cross-over method for this operation [118]. This
implies that two parent solutions are combined to construct two child solutions,
such that the children get approximately half of the solution (CPSSeq as well as
FlowSeqMap) from each parent.

Further, we also used elitist selection method that allows the �ttest solution to
walk into the next generation unaltered.

3. Mutation alters candidate solutions slightly to maintain diverse solutions for a
wider exploration of the solution space. Typically, the mutation operator is
applied with a very low probability to avoid randomizing the candidate solutions.
While applying this operation, we mutated randomly selected candidate solutions
by swapping a randomly selected pair of systems in its CPSSeq.

At the end of the speci�ed iterations, we choose the �ttest solution present in the
population (Line 14).
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8.3.3 Extensions for Dynamic Routing

Our approaches can be easily extended to compute routes for time-triggered �ows of
new CPS added into the network. It may be noted that the routes of the time-triggered
�ows depends purely on the sequence in which the CPS' are taken up for scheduling,
CPSSeq, and the sequence of the �ows corresponding to a CPS, FlowSeqMap. Thus,
on adding a new CPS in to the network, we append the CPS to the existing sequence,
CPSSeq. We then execute the basic routing algorithm, presented in Algorithm 6, for
the corresponding CPS only with the unallocated links in the network. Like in the
Greedy Algorithm, we use a random ordering of the �ows for the new CPS due to lack
of heuristics for ordering the �ows. In an event of adding several CPS in the network,
the Genetic Algorithm can be deployed for the new systems only by including only
the allocated links in the network graph. Overall, this ensures that the routes of the
existing �ows are not altered due to the addition of new CPS.

For removing any CPS from the network, the links allocated to the constituent time-
triggered �ows can be deallocated and re-added to the topology graph. These links
can then be for the routing of the future �ows.

8.4 Evaluations

The algorithms presented in this chapter route the time-triggered communication �ows
over edge disjoint paths. The resulting end-to-end delay is then the sum of propagation
delay of the network links and the processing delay of the network switches over which
the �ow is routed. The queuing delay is eliminated as no two �ows contend for access
to any network link. The evaluation results in [28] found the processing delay of a
state-of-the-art SDN switch to be constant (around 3.8µs). Further, the propagation
delay in the corresponding 1 Gbps link was estimated to be constant (around 5�15ns)
depending on its length. Thus, using edge disjoint paths for routing results in minimal
end-to-end delays (in the microseconds range) for the time-triggered �ows.

In the following, we also evaluated our algorithms in terms of the quality of the solution
that they generate, i.e., the number of CPS that they realise, and their runtimes.
For this, we simulated them to calculate the edge disjoint network paths for time-
triggered �ows of a varying set of CPS over random network topologies generated using
Erd®s-Rényi model [60]. We used NetworkX to generate these random topologies for
simulating the evaluation scenarios [62].

The algorithms were primarily evaluated in two phases. In the �rst phase, we compared
the quality of solution with the optimal solution for a small topology. Note that due
to the high complexity of the problem, such a comparison with the optimum is only
possible for smaller scenarios. The goal here was to gauge if the solutions generated
by our algorithms are close enough to the optimal solutions. In the second phase, we
compared the performance of the algorithms with each other when executed on larger
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Figure 8.1: Small topology for benchmarking. S indicates the network switches while
H indicates the end-hosts.

problem sizes. Here, we evaluated the runtime of the algorithms along with the quality
of solutions generated in each of the evaluation scenario.

8.4.1 Performance Comparison with Optimum for Small

Problem Sizes

To determine if the solutions generated by our algorithms are close enough to the
optimal solution, we created a small benchmark topology with high path diversity con-
sisting of 5 network switches and 12 hosts, as shown in Figure 8.1. Further, we created
a set of 20 CPS, each requiring between 1 to 5 time-triggered �ows. By exhaustively
searching the solution space, we determined that the optimal solution for this problem
realises 7 CPS consisting of 12 �ows in total.

We executed the greedy and the genetic algorithms on the benchmark topology with
inputs to consider 6 candidate solutions. We allowed the genetic algorithm to perform
4 iterations to improve the candidate solutions. The results of 100 execution runs
of these algorithms are summarised in Table 8.1. For these executions, the solutions
generated by the genetic and the greedy algorithm could, on an average, realise 6.42
and 6.16 CPS respectively compared to the 7 CPS realisable using the optimal solution.
Moreover, the genetic algorithm could produce the optimal solution 42 times out of
the 100 execution runs compared to the 16 times by the greedy algorithm.

Thus, for smaller topologies, the solutions generated by our algorithms are quite close
to the optimal ones. Further, they are able to generate the optimal solutions frequently
in case they are executed multiple times.

8.4.2 Comparison of algorithms

In the second phase of evaluations, we compared the performance of our algorithms
with each other. For this, we created random graphs using the Erd®s-Rényi model,
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Algorithms Category Mean Std. Dev. Optimal Solution

Genetic Algorithm
Systems Realised 6.42 0.49 42 times

Flows 9.95 1.81 42 times

Greedy Algorithm
Systems Realised 6.16 0.37 16 times

Flows 8.76 1.61 16 times

Table 8.1: Results of 100 execution runs of greedy and genetic algorithm on the bench-
mark topology shown in Figure 8.1.

Figure 8.2: Quality of solutions produced (Average of 100 execution runs)
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n
Genetic Algorithm Greedy Algorithm

Sys. Realised Flows Runtime Sys. Realised Flow Runtime

30 29.72 54.2 105ms 29.04 52.25 18ms
40 39.36 70.45 138ms 38.87 63.48 24.3ms
50 49.43 91.49 188ms 48.8 90.07 34.2ms

Table 8.2: Average results of 100 execution runs of greedy and genetic algorithm on
random topologies generated using Erd®s-Rényi model (p = 0.25 and vary-
ing n).

denoted as G(n, p) [60]. These graphs consist of n nodes with p denoting the probability
that any two nodes are connected by an edge. We also created a set of target CPS
containing 2n systems, each consisting of between 1 to 3 time-triggered �ows uniformly
distributed over the network. We executed our algorithms on these randomly generated
graphs and compared their performance with respect to the quality of the solutions
they generated and their corresponding runtimes.

To ensure that none of these algorithms gain an undue advantage, we executed both
the algorithms with the input to consider only 6 candidate solutions. The genetic
algorithm was executed to perform 4 iterations.

The Table 8.2 summarises the results of 100 execution runs of the algorithms on ran-
dom topologies generated using the Erd®s-Rényi model with varying n. These results
show that when both the algorithms consider an equal number of candidate solutions,
the average solution provided by the genetic algorithm is better than the greedy al-
gorithm although its runtime is an order of magnitude higher than that of the greedy
algorithm.

Finally, we also executed the algorithms to evaluate if the genetic algorithm can outper-
form the greedy algorithm despite considering a lower number of candidate solutions,
thereby decreasing the penalty in runtime for the genetic algorithm. For this purpose,
we created random topologies, G(n = 12 to 22, p = 0.25), again using the Erd®s-Rényi
model. Similar to the preceding evaluation scenario, we created a random set of target
CPS containing 2n systems for each of the corresponding topologies. The results of
executing the algorithms with di�erent number of candidate solutions (average of 100
execution runs) is summarised in Figures 8.2�8.3. For this evaluation, we executed the
greedy algorithm with 6 candidate solutions while the genetic algorithm was executed
with 2, 4, and 6 candidate solutions. An obvious result of this experimentation was that
the quality of solutions generated (Figure 8.2) and the algorithm runtime (Figure 8.3)
increases with an increase in number of candidate solutions considered irrespective of
the topology. Figure 8.2 further shows slight �uctuations in the quality of the solutions
produced by the algorithms on various topologies. We attribute these �uctuations to
the randomness of generating initial candidate solutions in both of these algorithms.
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Figure 8.3: Runtime of the algorithms (Average of 100 execution runs)

Despite these �uctuations, we can infer that the genetic algorithms produce better
quality results as compared to the greedy algorithm despite using far lower number
of candidate solutions for all the topologies that were considered. For instance, the
genetic algorithm considering 4 candidate solutions provided better solutions than the
greedy algorithm considering 6 candidate solutions.

To summarise, the genetic algorithm can be �ne-tuned using its input parameters
like the number of candidate solutions it considers and the number of iterations it
undergoes. The �ne-tuning involves a trade-o� between the quality of the solution it
generates and the algorithm runtime.

8.5 Related Work & Discussion

The idea of routing communication �ows over edge disjoint paths in the network has
been used in the networking community for a variety of purposes. Among others,
such routing schemes are used for improving the e�ective bandwidth utilization in
the network by routing the �ows between the source and destination over multiple
disjoint paths [119] [120] [114]. Furthermore, these routing schemes are also used
for improving fault tolerance of the networks for the network applications [121]. By
routing communication �ows over k disjoint paths, the applications relying on the �ow
are tolerant against up to k link failures, one over each of the path.

Spatial multiplexing, in particular isolating the tra�c by means of the queues at the
output port of a switch, has been also used as a means to provide real-time guarantees
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for communication. Kumar et al. allocate one queue for each real-time �ow at all
the output ports in a bid to achieve deterministic latencies [92]. On the other hand,
Grosvenor et al. present network architecture which provides di�erent trade-o�s be-
tween deterministic latencies and throughput by separating tra�c into di�erent queues
each guaranteeing speci�c bounds on incurred latency [93]. In contrast, our routing
algorithms do not strive to exploit the availability of the queues at the output port
by allocating a queue for each of the time-triggered �ow. This is mainly because the
time-triggered �ows in the lower priority queues would be a�ected by the �ows in the
higher priority queues.

Our routing algorithms, which allocate edge disjoint paths to the time-sensitive com-
munication �ows in manufacturing systems, perform well only with network topologies
with high path diversity, e.g., in multi-rooted trees. Without high path diversity, it
would be di�cult to allocate edge disjoint network paths to most time-sensitive �ows.
Given the concerns relating to the network utilization on account of scheduled traf-
�c, one might argue against allocating network links exclusively to communication
�ows. While data-center topologies do assign �non-con�icting paths� for some of their
�ows, they do so only for ensuring that bandwidth constraints on all network links
are respected [114]. However, the QoS levels, in particular the communication latency
and jitter, desired by time-triggered �ows of manufacturing system are a notch higher
than the soft real-time communication �ows in data-centers. Given that the time-
triggered �ows are negatively a�ected when network resources (like switch bu�ers,
network links, etc.) are shared across them, allocating edge disjoint network paths to
these time-triggered �ows remains the only available option in absence of any level of
synchronization in the network.

With our routing approach, the network utilization on account of time-triggered tra�c
is extremely low in absence of best-e�ort tra�c in the network. Furthermore, we also
agree that the approach of assigning network links exclusively (shared with low-priority
best-e�ort tra�c) for one time-triggered �ow is not scalable to systems consisting of
thousands of time-triggered �ows. For such large systems, additional primitives are
required from the network enabling the time-triggered �ows to traverse over the links
in a pre-de�ned time-multiplexed manner, i.e., the �ows are assigned time-slots during
which they have exclusive access to all the resources in a network path, but overall the
network links are used by more than one �ow. We have already discussed such net-
work architectures in Chapters 4 and 6. Nonetheless, the algorithms presented in this
chapter can be used in unsynchronized partitions of a large network or for tunnelling
time-triggered tra�c between two synchronized sub-networks over an unsynchronized
partition.
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8.6 Summary

In this chapter, we discussed the handling of time-triggered �ows over unsynchronized
networks by spatial multiplexing for providing them with necessary latency guarantees.
To this end, we introduced the corresponding routing problem for these �ows and pro-
posed a set of algorithms for e�ciently solving it by exploiting the logical centralization
of the control plane available in SDN. Our solutions compute routes for time-triggered
�ows while striving to maximize the number of realised cyber-physical systems. While
unsynchronized networks are seldom used in production networks due to the issues
with the network utilization, the presented algorithms can be used in unsynchronized
partitions of a large network or for tunnelling time-triggered tra�c between two dif-
ferent partitions of the network, each of which has one or more network participants
capable of scheduling time-triggered transmissions.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

In this chapter, we brie�y review the contributions of this thesis and provide an
overview on potential future work based on our results.

9.1 Summary of Contributions

Converged communication infrastructure which can provide di�erent levels of service
guarantees for the network applications based on their requirements is the need of the
hour for the manufacturing networks of smart factories. The information and commu-
nication technology (ICT) infrastructures in these smart factories are expected to host
wide variety of applications ranging from highly time-sensitive cyber-physical systems
to soft real-time complex event processing (CEP) applications. Several standards or-
ganisations are hence working towards standardizing real-time extensions for Ethernet,
primarily designed for providing best-e�ort service, to enable its usage as a converged
communication network.

The handling of time-triggered tra�c stemming from hard real-time cyber-physical
systems on the manufacturing shop�oor in Ethernet networks is, in particular, chal-
lenging. Typically, such time-triggered tra�c demands strict bounds (to the order of a
few microseconds) on the end-to-end latency and jitter. To provide such stringent guar-
antees, the transmissions of time-triggered tra�c are scheduled through the network
based on a pre-computed schedule inline with the timing constraints of the correspond-
ing data streams. The IEEE Time-sensitive Networking (TSN) Task Group (TG) has
even speci�ed a time-aware programmable gating mechanism for enforcing these trans-
mission schedules by e�ectively isolating the time-triggered tra�c from other kinds of
tra�c. However, the computation of these transmission schedules to e�ectively uti-
lize the network while also meeting the timing constraints of the time-triggered data
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streams is no trivial task. Moreover, the computation of these schedules are heavily de-
pendent on the routes of the corresponding data streams, making routing an important
consideration for the scheduling algorithms.

Our scienti�c contributions in this thesis mainly deal with the computation of trans-
mission schedules and routes for time-triggered tra�c in Ethernet networks. We divide
the solution space for the scheduling problem of time-triggered tra�c in Ethernet net-
works based on where the computed schedules are enforced, i.e., on the switches as
well as hosts, only on the switches, only on the hosts, and neither on the hosts nor
switches. Each of these cases provide a trade-o� between the network utilization with
respect to scheduled tra�c, bounds on the latency and jitter, and the costs incurred
on account of the need for specialized hardware. In this thesis, we present scheduling
and routing algorithms for computing transmission schedules and routes for each of
the aforementioned cases. In particular, the results of this thesis are:

1. We formulated the scheduling problem of time-triggered data streams in networks
equipped with the programmable gating mechanism (IEEE 802.1Qbv standard)
as a No-wait Packet Scheduling Problem (NW-PSP) and mapped it to the No-
wait Job-shop Scheduling Problem (NW-JSP). We also introduced the Integer
Linear Programming (ILP) formulations for computing an exact solution along
with a meta-heuristic approach based on Tabu search for reducing the runtime.
The Tabu search approach scales to compute transmission schedules for up to
1500 data streams in less than 3 hours. Furthermore, we presented a schedule
compression algorithm which results in up to 42% reduction in the number of
guard bands required for isolating time-triggered tra�c from best-e�ort tra�c.

2. To bene�t from our scheduling solutions to the NW-PSP, we also introduced the
metric Maximum Scheduled Tra�c Load (MSTL) to measure the distribution of
scheduled tra�c in the network. Furthermore, we introduced routing algorithms
for time-triggered data streams based on the MSTL to improve the schedulability
of time-triggered data streams by evenly distributing the tra�c in the network.
Our evaluations show that these routing algorithms improve the schedulability
of the time-triggered tra�c by up to 30% relative to Equal Cost Multipathing
(ECMP) and by up to 60% relative to shortest path routing.

3. We introduced Time-sensitive Software-de�ned Network (TSSDN), an SDN based
architecture, for handling time-triggered tra�c using commodity SDN switches,
i.e., the transmission schedules for the time-triggered data streams cannot be
enforced on the switches. Furthermore, we presented solutions�S/UR, S/PR,
and S/FR�of varying time-complexities for computing schedules and routes for
time-triggered data streams in TSSDN for static scenarios. The S/UR computes
optimal solutions, and hence, has high runtime, while the S/PR and S/FR ap-
proximate the optimal solutions by restricting longer paths for the data streams,
thus reducing the runtime.
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We also introduced solutions�D/SAP and D/MM�for incrementally scheduling
data streams in TSSDN without a�ecting the already scheduled data streams
in the network. With additional optimizations, near-optimal schedules can be
incrementally calculated for new time-triggered data streams in under a second.

4. We also introduced the routing problem for time-triggered data streams in net-
works where neither the hosts nor the switches are synchronized. Here, we maxi-
mize the number of cyber-physical systems that can be supported in the network
by routing their constituent real-time data streams over disjoint paths, i.e., we
spatially isolate real-time data streams. Our solutions�greedy approach and
genetic algorithm�closely approximate the optimal solution.

5. Finally, we show by means of a proof-of-concept implementation that the com-
puted schedules can be precisely adhered with using userspace packet processing
frameworks like Intel's Data Plane Development Kit (DPDK).

Overall, the contributions of this thesis cover the entire spectrum of the solution space
providing scheduling and routing solutions for time-triggered data streams in Ethernet
network.

9.2 Future Work

The research results presented in this thesis can be potentially extended in several direc-
tions. A short list of potential future work based on our research results is enumerated
as follows.

1. In this thesis, we have assumed a rather homogeneous system model, i.e., we
assume that all network participants are similar to each other in terms of their
scheduling capabilities. An interesting extension of the research presented in this
thesis would be to combine the di�erent scheduling and routing approaches as
building blocks to develop algorithms for a hybrid system, e.g., a network where
not all switches are equipped with IEEE 802.1Qbv extensions and only a few
hosts have synchronized clocks.

One possible approach for this would be to use TSSDN to tunnel time-triggered
tra�c between switches capable of scheduling transmissions.

2. Another direction to extend the scheduling and routing algorithms is to incor-
porate redundancy while computing routes to improve the robustness and fault
tolerance in the network. The IEEE 802.1CB already provides mechanisms for
frame replication in the network in order to forward tra�c over redundant paths
along with mechanisms for detection and elimination of duplicate packets result-
ing from such forwarding.
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9 Conclusion and Future Work

3. We have assumed complete centralization of the network control plane in our
system model for simplifying the implementation of the scheduling and routing
algorithms. To tackle the resulting scalability issues, one could think of distribut-
ing the control plane to multiple controllers which can execute the scheduling and
routing algorithms in parallel.

We could develop hierarchical approaches in which each controller is responsible
for scheduling and routing �ows in a part of the network. The schedule and
routes of �ows spanning over multiple network partitions is then composed by
combining the results from multiple controllers. Alternatively, controllers can be
responsible for a part of the schedule, enabling them to execute the algorithms for
multiple �ows in parallel without any con�icts. Such ideas have been successfully
applied in literature to solve multiple performance issues in various systems [122]
[123] [124]. A preliminary approach to compute segmented schedules (based on
the periods of the �ows) and then combine them to form the global schedule is
presented in [125].

4. A logical extension to this work is to evaluate the impact of the scheduled tra�c
on the latencies/throughput of the other tra�c classes in each of the cases we
presented. One approach for this could be the use of network calculus for timing
analysis like in [74] [126] [127] [128].

5. So far we have focussed on only computing schedules and routes for time-triggered
data streams modelled as unicast and multicast �ows. Communication paradigms
like the publish/subscribe [129] [130] [131] can be implemented on the top of time-
sensitive networks. The challenge here would be to map the advertisements and
subscriptions of the publish/subscribe middleware to corresponding schedules
and routes in the network. OPC UA, a widely used industrial communication
middleware to semantically describe data streams, would bene�t signi�cantly
from such a real-time publish/subscribe communication network.
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