15 research outputs found

    Visual prostheses for the blind

    Get PDF
    After more than 40 years of research, visual prostheses are moving from the laboratory into the clinic. These devices are designed to provide prosthetic vision to the blind by stimulating localized neural populations in one of the retinotopically organized structures of the visual pathway - typically the retina or visual cortex. The long gestation of this research reflects the many significant technical challenges encountered including surgical access, mechanical stability, hardware miniaturization, hermetic encapsulation, high-density electrode arrays, and signal processing. This review provides an introduction to the pathophysiology of blindness; an overview of existing visual prostheses, their advantages and drawbacks; the perceptual effects evoked by electrical stimulation; as well as the role played by plasticity and training in clinical outcomes

    Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex

    Get PDF
    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees

    In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants

    No full text
    Recently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo

    Techniques for Processing Eyes Implanted With a Retinal Prosthesis for Localized Histopathological Analysis

    Get PDF
    With the recent development of retinal prostheses, it is important to develop reliable techniques for assessing the safety of these devices in preclinical studies. However, the standard fixation, preparation, and automated histology procedures are not ideal. Here we describe new procedures for evaluating the health of the retina directly adjacent to an implant. Retinal prostheses feature electrode arrays in contact with eye tissue. Previous methods have not been able to spatially localize the ocular tissue adjacent to individual electrodes within the array. In addition, standard histological processing often results in gross artifactual detachment of the retinal layers when assessing implanted eyes. Consequently, it has been difficult to assess localized damage, if present, caused by implantation and stimulation of an implanted electrode array. Therefore, we developed a method for identifying and localizing the ocular tissue adjacent to implanted electrodes using a (color-coded) dye marking scheme, and we modified an eye fixation technique to minimize artifactual retinal detachment. This method also rendered the sclera translucent, enabling localization of individual electrodes and specific parts of an implant. Finally, we used a matched control to increase the power of the histopathological assessments. In summary, this method enables reliable and efficient discrimination and assessment of the retinal cytoarchitecture in an implanted eye

    A Wide-Field Suprachoroidal Retinal Prosthesis Is Stable and Well Tolerated Following Chronic Implantation

    Get PDF
    PURPOSE: The safety of chronic implantation of a retinal prosthesis in the suprachoroidal space has not been established. This study aimed to determine the safety of a wide-field suprachoroidal electrode array following chronic implantation using histopathologic techniques and electroretinography. METHODS: A platinum electrode array in a wide silicone substrate was implanted unilaterally in the suprachoroidal space in adult cats (n = 7). The lead and connector were tunneled out of the orbit and positioned subcutaneously. Postsurgical recovery was assessed using fundus photography and electroretinography (ERG). Following 3 months of passive implantation, the animals were terminated and the eyes assessed for the pathologic response to implantation. RESULTS: The implant was mechanically stable in the suprachoroidal space during the course of the study. The implanted eye showed a transient increase in ERG response amplitude at 2 weeks, which returned to normal by 3 months. Pigmentary changes were observed at the distal end of the implant, near the optic disc. Histopathologic assessment revealed a largely intact retina and a thin fibrous capsule around the suprachoroidal implant cavity. The foreign body response was minimal, with sporadic presence of macrophages and no active inflammation. All implanted eyes were negative for bacterial or fungal infections. A midgrade granuloma and thick fibrous buildup surrounded the extraocular cable. Scleral closure was maintained in six of seven eyes. There were no staphylomas or choroidal incarceration. CONCLUSIONS: A wide-field retinal prosthesis was stable and well tolerated during long-term suprachoroidal implantation in a cat model. The surgical approach was reproducible and overall safe

    Oculomotor responses to dynamic stimuli in a 44-channel suprachoroidal retinal prosthesis

    Full text link
    Purpose: To investigate oculomotor behavior in response to dynamic stimuli in retinal implant recipients. Methods: Three suprachoroidal retinal implant recipients performed a four-alternative forced-choice motion discrimination task over six sessions longitudinally. Stimuli were a single white bar (“moving bar”) or a series of white bars (“moving grating”) sweeping left, right, up, or down across a 42′′ monitor. Performance was compared with normal video processing and scrambled video processing (randomized image-to-electrode mapping to disrupt spatiotemporal structure). Eye and head movement was monitored through-out the task. Results: Two subjects had diminished performance with scrambling, suggesting retinotopic discrimination was used in the normal condition and made smooth pursuit eye movements congruent to the moving bar stimulus direction. These two subjects also made stimulus-related eye movements resembling optokinetic reflex (OKR) for moving grating stimuli, but the movement was incongruent with stimulus direction. The third subject was less adept at the task, appeared primarily reliant on head position cues (head movements were congruent to stimulus direction), and did not exhibit retinotopic discrimination and associated eye movements. Conclusions: Our observation of smooth pursuit indicates residual functionality of corti-cal direction-selective circuits and implies a more naturalistic perception of motion than expected. A distorted OKR implies improper functionality of retinal direction-selective circuits, possibly due to retinal remodeling or the non-selective nature of the electrical stimulation. Translational Relevance: Retinal implant users can make naturalistic eye movements in response to moving stimuli, highlighting the potential for eye tracker feedback to improve perceptual localization and image stabilization in camera-based visual prosthe-ses

    Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings

    Get PDF
    OBJECTIVE: Minimally-invasive approaches are needed for long-term reliable Electroencephalography (EEG) recordings to assist with epilepsy diagnosis, investigation and more naturalistic monitoring. This study compared three methods for long-term implantation of sub-scalp EEG electrodes. METHODS: Three types of electrodes (disk, ring, and peg) were fabricated from biocompatible materials and implanted under the scalp in five ambulatory ewes for 3months. Disk electrodes were inserted into sub-pericranial pockets. Ring electrodes were tunneled under the scalp. Peg electrodes were inserted into the skull, close to the dura. EEG was continuously monitored wirelessly. High resolution CT imaging, histopathology, and impedance measurements were used to assess the status of the electrodes at the end of the study. RESULTS: EEG amplitude was larger in the peg compared with the disk and ring electrodes (p<0.05). Similarly, chewing artifacts were lower in the peg electrodes (p<0.05). Electrode impedance increased after long-term implantation particularly for those within the bone (p<0.01). Micro-CT scans indicated that all electrodes stayed within the sub-scalp layers. All pegs remained within the burr holes as implanted with no evidence of extrusion. Eight of 10 disks partially eroded into the bone by 1.0mm from the surface of the skull. The ring arrays remained within the sub-scalp layers close to implantation site. Histology revealed that the electrodes were encapsulated in a thin fibrous tissue adjacent to the pericranium. Overlying this was a loose connective layer and scalp. Erosion into the bone occurred under the rim of the sub-pericranial disk electrodes. CONCLUSIONS: The results indicate that the peg electrodes provided high quality EEG, mechanical stability, and lower chewing artifact. Whereas, ring electrode arrays tunneled under the scalp enable minimal surgical techniques to be used for implantation and removal

    Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis

    Get PDF
    BACKGROUND: Current surgical techniques for retinal prosthetic implantation require long and complicated surgery, which can increase the risk of complications and adverse outcomes. METHOD: The suprachoroidal position is known to be an easier location to access surgically, and so this study aimed to develop a surgical procedure for implanting a prototype suprachoroidal retinal prosthesis. The array implantation procedure was developed in 14 enucleated eyes. A full-thickness scleral incision was made parallel to the intermuscular septum and superotemporal to the lateral rectus muscle. A pocket was created in the suprachoroidal space, and the moulded electrode array was inserted. The scleral incision was closed and scleral anchor point sutured. In 9 of the 14 eyes examined, the device insertion was obstructed by the posterior ciliary neurovascular bundle. Subsequently, the position of this neurovascular bundle in 10 eyes was characterized. Implantation and lead routing procedure was then developed in six human cadavers. The array was tunnelled forward from behind the pinna to the orbit. Next, a lateral canthotomy was made. Lead fixation was established by creating an orbitotomy drilled in the frontal process of the zygomatic bone. The lateral rectus muscle was detached, and implantation was carried out. Finally, pinna to lateral canthus measurements were taken on 61 patients in order to determine optimal lead length. RESULTS: These results identified potential anatomical obstructions and informed the anatomical fitting of the suprachoroidal retinal prosthesis. CONCLUSION: As a result of this work, a straightforward surgical approach for accurate anatomical suprachoroidal array and lead placement was developed for clinical application
    corecore