661 research outputs found

    Sequential Sparsening by Successive Adaptation in Neural Populations

    Get PDF
    In the principal cells of the insect mushroom body, the Kenyon cells (KC), olfactory information is represented by a spatially and temporally sparse code. Each odor stimulus will activate only a small portion of neurons and each stimulus leads to only a short phasic response following stimulus onset irrespective of the actual duration of a constant stimulus. The mechanisms responsible for the sparse code in the KCs are yet unresolved. Here, we explore the role of the neuron-intrinsic mechanism of spike-frequency adaptation (SFA) in producing temporally sparse responses to sensory stimulation in higher processing stages. Our single neuron model is defined through a conductance-based integrate-and-fire neuron with spike-frequency adaptation [1]. We study a fully connected feed-forward network architecture in coarse analogy to the insect olfactory pathway. A first layer of ten neurons represents the projection neurons (PNs) of the antenna lobe. All PNs receive a step-like input from the olfactory receptor neurons, which was realized by independent Poisson processes. The second layer represents 100 KCs which converge onto ten neurons in the output layer which represents the population of mushroom body extrinsic neurons (ENs). Our simulation result matches with the experimental observations. In particular, intracellular recordings of PNs show a clear phasic-tonic response that outlasts the stimulus [2] while extracellular recordings from KCs in the locust express sharp transient responses [3]. We conclude that the neuron-intrinsic mechanism is can explain a progressive temporal response sparsening in the insect olfactory system. Further experimental work is needed to test this hypothesis empirically. [1] Muller et. al., Neural Comput, 19(11):2958-3010, 2007. [2] Assisi et. al., Nat Neurosci, 10(9):1176-1184, 2007. [3] Krofczik et. al. Front. Comput. Neurosci., 2(9), 2009.Comment: 5 pages, 2 figures, This manuscript was submitted for review to the Eighteenth Annual Computational Neuroscience Meeting CNS*2009 in Berlin and accepted for oral presentation at the meetin

    Computer Model for Simulating Almond Moth (Lepidoptera: Pyralidae) Population Dynamics

    Get PDF
    We developed a computer model for simulating the population dynamics of the almond moth, Cadra cautella (Walker). The model incorporates previously published life history data for the almond moth developing on stored peanuts, Arachis hypogaea L., including stage-specific immature developmental time and survival and adult longevity and fecundity. The model was modified so that it also could be used to simulate almond moth population dynamics on stored, dried citrus pulp and stored corn (Zea mays L.). We tested the validity of the model by using 4 previously published data sets. The model was useful for interpreting population dynamics observed in the previously published studies and will be useful for optimizing management strategies for the almond moth

    Height at the withers estimation in the horses based on the internal dimension of cranial cavity

    Get PDF
    The investigations were carried out on 17 modern half-breed horse skulls and their metacarpal and metatarsal bones. The basal length (BL), total length (TL), internal cranial cavity dimension and maximal length of metacarpus and metatarsus and maximal lateral length of metacarpus and metatarsus were measured according to Kiesewalter and von den Driesch. During height at the withers estimation, the Kiesewaler and Vitt methods were used. The Wyrost and Kucharczyk mathematical formula was modified for height at the withers calculation (Hestmd = 1.016 × D) in horses. All height at the withers estimation methods were statistically analysed and compared. The analysis of variance ANOVA proved the lack of significant difference between the investigated values. The results achieved using Wyrost and Kucharczyk modified method are strongly comparable to Kiesewalter methods results computed using the metacarpal and metatarsal bones measurements. The height at the withers calculated on the basis of TL slightly differs from 2 above-mentioned methods. The BL Vitt’s method was the least exact

    Broncho-alveolar lavage fluid recovery correlates with airway neutrophilia in lung transplant patients

    Get PDF
    SummaryBroncho-alveolar lavage (BAL) is important to assess airway inflammation. There is debate about the volume instilled, but the variation of BAL fluid recovery (BFR) has received little attention. We investigated the association between BFR and rejection/infection status after lung transplantation (LTx).We combined clinical findings, FEV1, transbronchial biopsies and BAL analysis (BFR, interleukin-8 (IL8), cell counts, microbiology) of 115 samples/LTx patients. The patients were divided into 4 groups: stable (subdivided in colonized and non-colonized), acute rejection (AR), Bronchiolitis Obliterans Syndrome (BOS) and infection.BFR was significantly lower in AR, BOS and infection, and correlated with the severity of AR and BOS. A 10ml decrease of BFR was associated with a FEV1 decrease of 4.4% and a %neutrophils and IL8 increase of 9.6% and 9.7pg/ml, respectively. Colonized stable patients had no significant differences in airway inflammation, FEV1 and BFR compared to the non-colonized stable patients.We conclude that a low BFR is an indicator of lung rejection or infection. BFR variation is related to airway obstruction and neutrophilic inflammation, which can cause an increased compliance of the airway wall, making it more collapsible. Airway colonization in stable patients had no effect on airway inflammatory parameters, BFR and FEV1

    Immunologic biomarkers in relation to exposure markers of PCBs and dioxins in Flemish adolescents (Belgium).

    Get PDF
    In this study, we investigated 17- to 18-year-old boys and girls to determine whether changes in humoral or cellular immunity or respiratory complaints were related to blood serum levels of polychlorinated biphenyls (PCBs) and dioxin-like compounds after lifetime exposure in Flanders (Belgium). We obtained blood samples from and administered questionnaires to 200 adolescents recruited from a rural area and two urban suburbs. Physicians recorded medical history and respiratory diseases. We measured immunologic biomarkers such as differential blood cell counts, lymphocyte phenotypes, and serum immunoglobulins. As biomarkers of exposure, we determined the serum concentrations of PCBs (PCB 138, PCB 153, and PCB 180) and dioxin-like compounds [chemical-activated luciferase expression (CALUX) bioassay]. The percentages of eosinophils and natural killer cells in blood were negatively correlated with CALUX toxic equivalents (TEQs) in serum (p = 0.009 and p = 0.05, respectively). Increased serum CALUX TEQs resulted in an increase in serum IgA levels (p = 0.05). Furthermore, levels of specific IgEs (measured by radioallergosorbent tests) of cat dander, house dust mite, and grass pollen were also significantly and negatively associated with the CALUX TEQ, with odds ratios (ORs) equal to 0.63 [95% confidence interval (CI), 0.42-0.96], 0.68 (0.5-0.93), and 0.70 (0.52-0.95), respectively. In addition, reported allergies of the upper airways and past use of antiallergic drugs were negatively associated with CALUX TEQs, with ORs equal to 0.66 (0.47-0.93) and 0.58 (0.39-0.85), respectively. We found a negative association between IgGs and marker PCBs in serum (p = 0.009). This study shows that immunologic measurements and respiratory complaints in adolescents were associated with environmental exposure to polyhalogenated aromatic hydrocarbons (PHAHs). The negative correlation between PHAHs and allergic responses in adolescents suggested that exposure may entail alterations in the immune status

    Variation in metapopulation dynamics of a wetland mammal: The effect of hydrology.

    Get PDF
    Key factors affecting metapopulation dynamics of animals include patch size, isolation, and patch quality. For wetland-associated species, hydrology can affect patch availability, connectivity, and potentially habitat quality; and therefore drive metapopulation dynamics. Wetlands occurring on natural river floodplains typically have more dynamic hydrology than anthropogenic wetlands. Our overall objective was to assess the multiyear spatial and temporal variation in occupancy and turnover rates of a semi-aquatic small mammal at two hydrologically distinct wetland complexes. We live-trapped marsh rice rats (Oryzomys palustris) for 3 yr and \u3e50 000 trap nights at nine wetland patches on the Mississippi River floodplain and 14 patches at a reclaimed surface mine in southern Illinois. We used dynamic occupancy modeling to estimate initial occupancy, detection, colonization, and extinction rates at each complex. Catch per unit effort (rice rats captured/1000 trap nights) was markedly higher at the floodplain site (28.1) than the mining site (8.1). We found no evidence that temperature, rainfall, or trapping effort affected detection probability. Probability of initial occupancy was similar between sites and positively related to patch size. Patch colonization probability at both sites was related negatively to total rainfall 3 weeks prior to trapping, and varied across years differently at each site. We found interacting effects of site and rainfall on extinction probability: extinction increased with total rainfall 3 months prior to trapping but markedly more at the floodplain site than at the mining site. These site-specific patterns of colonization and extinction are consistent with the rice rat metapopulation in the floodplain exhibiting a habitat-tracking dynamic (occupancy dynamics driven by fluctuating quality), whereas the mineland complex behaved more as a classic metapopulation (stochastic colonization & extinction). Our study supports previous work demonstrating metapopulation dynamics in wetland systems being driven by changes in patch quality (via hydrology) rather than solely area and isolation

    Onset of negative interspike interval correlations in adapting neurons

    Full text link
    Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical description of conditional responses, we obtain analytically these correlations in an adequate dynamical neuron model resembling adaptation. We derive the serial correlation coefficients for arbitrary lags, under a small adaptation scenario. In this case, the behavior of correlations is universal and depends on the first-order statistical description of an exponentially driven time-inhomogeneous stochastic process.Comment: 12 pages (10 pages in the journal version), 6 figures, published in Phys. Rev. E; http://link.aps.org/doi/10.1103/PhysRevE.84.04190

    Two-year neurocognitive responses to first occupational lead exposure

    Get PDF
    Objectives Lead exposure causes neurocognitive dysfunction in children, but its association with neurocognition in adults at current occupational exposure levels is uncertain mainly due to the lack of longitudinal studies. In the Study for Promotion of Health in Recycling Lead (NCT02243904), we assessed the two-year responses of neurocognitive function among workers without previous known occupational exposure newly hired at lead recycling plants. Methods Workers completed the digit-symbol test (DST) and Stroop test (ST) at baseline and annual follow-up visits. Blood lead (BL) was measured by inductively coupled plasma mass spectrometry (detection limit 0.5 ÎŒg/ dL). Statistical methods included multivariable-adjusted mixed models with participants modelled as random effect. Results DST was administered to 260 participants (11.9% women; 46.9%/45.0% whites/Hispanics; mean age 29.4 years) and ST to 168 participants. Geometric means were 3.97 and 4.13 ÎŒg/dL for baseline BL, and 3.30 and 3.44 for the last-follow-up-to-baseline BL ratio in DST and ST cohorts, respectively. In partially adjusted models, a doubling of the BL ratio was associated with a 0.66% [95% confidence interval (CI) 0.03–1.30%; P=0.040] increase in latency time (DST) and a 0.35% (95% CI ‑1.63–1.63%; P=0.59) decrease in the inference effect (ST). In fully adjusted models, none of the associations of the changes in the DST and ST test results with the blood lead changes reached statistical significance (P≄0.12). Conclusions An over 3-fold increase in blood lead over two years of occupational exposure was not associated with a relevant decline in cognitive performance
    • 

    corecore