382 research outputs found

    Baryons in Holographic QCD

    Get PDF
    We study the baryon in holographic QCD with D4/D8/D8ˉD4/D8/\bar{D8} multi-DD brane system. In holographic QCD, the baryon appears as a topologically non-trivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton as Brane-induced Skyrmion. Some review of D4/D8/D8ˉD4/D8/\bar{D8} holographic QCD is presented from the viewpoints of recent hadron physics and phenomenologies. Four-dimensional effective theory with pions and ρ\rho mesons is uniquely derived from the non-abelian Dirac-Born-Infeld (DBI) action of D8D8 brane with D4D4 supergravity background, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ\rho-meson fields, we derive the energy functional and the Euler-Lagrange equation of Brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the pion profile F(r)F(r) and the ρ\rho-meson profile G(r)G(r) of the Brane-induced Skyrmion, and estimate its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ\rho mesons. We analyze interaction terms of pions and ρ\rho mesons in Brane-induced Skyrmion, and consider the role of ρ\rho-meson component appearing in baryons.Comment: 28 pages, 11 figure

    A note on fermions in holographic QCD

    Full text link
    We study the fermionic sector of a probe D8-brane in the supergravity background made of D4-branes compactified on a circle with supersymmetry broken explicitly by the boundary conditions. At low energies the dual field theory is effectively four-dimensional and has proved surprisingly successful in recovering qualitative and quantitative properties of QCD. We investigate fluctuations of the fermionic fields on the probe D8-brane and interpret these as mesinos (fermionic superpartners of mesons). We demonstrate that the masses of these modes are comparable to meson masses and show that their interactions with ordinary mesons are not suppressed.Comment: 21+1 pp, 1 figure; v2: typos corrected, refs. adde

    Brane-induced Skyrmion on S^3: baryonic matter in holographic QCD

    Get PDF
    We study baryonic matter in holographic QCD with D4/D8/\bar{D8} multi-D brane system in type IIA superstring theory. The baryon is described as the "brane-induced Skyrmion", which is a topologically non-trivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the "truncated-resonance model" approach for the baryon analysis, including pion and \rho meson fields below the ultraviolet cutoff scale M_KK \sim 1GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N_c as single brane-induced Skyrmion on the three-dimensional closed manifold S^3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S^3, and the decrease of the size of S^3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S^3 as the function of its radius R. We find a new picture of "pion dominance" near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion field survive. We also find the "swelling" phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another "instanton" description of the baryon in holographic QCD, considering the role of cutoff scale M_KK.Comment: 25 pages, 12 figure

    Sakai-Sugimoto model, Tachyon Condensation and Chiral symmetry Breaking

    Full text link
    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and anti D8-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra.Comment: 18 pages, latex; v3; conclusion in subsection 3.1 modified and appropriate changes made in the abstract and introduction to reflect this; typos corrected; version to appear in JHE

    Skyrmions with holography and hidden local symmetry

    Get PDF
    We study baryons as Skyrmions in holographic QCD with D4/D8/D8-bar multi-D brane system in type IIA superstring theory, and also in the non-linear sigma model with hidden local symmetry (HLS). Comparing these two models, we find that the extra-dimension and its nontrivial curvature can largely change the role of (axial) vector mesons for baryons in four-dimensional space-time. In the HLS approach, the rho-meson field as a massive Yang-Mills field has a singular configuration in Skyrmion, which gives a strong repulsion for the baryon as a stabilizer. When a_1 meson is added in this approach, the stability of Skyrmion is lost by the cancellation of rho and a_1 contributions. On the contrary, in holographic QCD, the rho-meson field does not appear as a massive Yang-Mills field due to the extra-dimension and its nontrivial curvature. We show that the rho-meson field has a regular configuration in Skyrmion, which gives a weak attraction for the baryon in holographic QCD. We argue that Skyrmion with pi, rho and a_1 mesons become stable due to the curved extra-dimension and also the presence of the Skyrme term in holographic QCD. From this result, we also discuss the features of our truncated-resonance analysis on baryon properties with pi and rho mesons below the cutoff scale M_KK about 1GeV in holographic QCD, which is compared with other 5D instanton analysis.Comment: 7 pages, 7 figure

    A Qualitative Study of Women's Lived Experiences of Conflict and Domestic Violence in Afghanistan.

    Get PDF
    This article empirically explores women's lived experiences of domestic violence and conflict in Afghanistan. A thematic analysis of 20 semistructured interviews with women living in safe houses produced three main themes about the relationship between conflict and domestic violence: (a) violence from loss of patriarchal support, (b) violence from the drug trade as an economic driver, and (c) violence from conflict-related poverty. We discuss the bidirectional nature of this relationship: Not only does conflict contribute to domestic violence, but domestic violence contributes to conflict through justifying armed intervention, separating women from economic and public life, and perpetuating patriarchy

    Dynamics of Baryons from String Theory and Vector Dominance

    Get PDF
    We consider a holographic model of QCD from string theory, a la Sakai and Sugimoto, and study baryons. In this model, mesons are collectively realized as a five-dimensional \U(NF)=U(1)×SU(NF)U(N_F)=U(1)\times SU(N_F) Yang-Mills field and baryons are classically identified as SU(NF)SU(N_F) solitons with a unit Pontryagin number and NcN_c electric charges. The soliton is shown to be very small in the large 't Hooft coupling limit, allowing us to introduce an effective field B{\cal B}. Its coupling to the mesons are dictated by the soliton structure, and consists of a direct magnetic coupling to the SU(NF)SU(N_F) field strength as well as a minimal coupling to the U(NF)U(N_F) gauge field. Upon the dimensional reduction, this effective action reproduces all interaction terms between nucleons and an infinite tower of mesons in a manner consistent with the large NcN_c expansion. We further find that all electromagnetic interactions, as inferred from the same effective action via a holographic prescription, are mediated by an infinite tower of vector mesons, rendering the baryon electromagnetic form factors completely vector-dominated as well. We estimate nucleon-meson couplings and also the anomalous magnetic moments, which compare well with nature.Comment: 65pages, 3 figures, vector mesons and axial-vector mesons are now canonically normalized (comparisons with data and conclusions unaffected

    The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System

    Get PDF
    International audienceWe study the gravitational Vlasov Poisson system ft+v⋅∇xf−E⋅∇vf=0f_t+v\cdot\nabla_x f-E\cdot\nabla_vf=0 where E(x)=∇xϕ(x)E(x)=\nabla_x \phi(x), Δxϕ=ρ(x)\Delta_x\phi=\rho(x), \rho(x)=\int_{\RR^N} f(x,v)dxdv, in dimension N=3,4N=3,4. In dimension N=3N=3 where the problem is subcritical, we prove using concentration compactness techniques that every minimizing sequence to a large class of minimization problems attained on steady states solutions are up to a translation shift relatively compact in the energy space. This implies in particular the orbital stability {\it in the energy space} of the spherically symmetric polytropes what improves the nonlinear stability results obtained for this class in \cite{Guo,GuoRein,Dol}. In dimension N=4N=4 where the problem is L1L^1 critical, we obtain the polytropic steady states as best constant minimizers of a suitable Sobolev type inequality relating the kinetic and the potential energy. We then derive using an explicit pseudo-conformal symmetry the existence of critical mass finite time blow up solutions, and prove more generally a mass concentration phenomenon for finite time blow up solutions. This is the first result of description of a singularity formation in a Vlasov setting. The global structure of the problem is reminiscent to the one for the focusing non linear Schrödinger equation iut=−Δu−∣u∣p−1uiu_t=-\Delta u-|u|^{p-1}u in the energy space H1(RN)H^1(\R^N)
    • 

    corecore