7 research outputs found

    Tapered Optical Fiber Sensor for Discrimination of Strain and Temperature

    Get PDF
    A simple Mach-Zehnder interferometer (MZI) based on a standard single-mode fiber for simultaneous strain and temperature sensing was proposed and demonstrated experimentally. The interferometer was fabricated by electrical arc discharge method in which a portion of the standard single-mode fiber was heated and stretched. Any special type of fiber or a particular splicer was not required to form the MZI and it indicated high resolution. To find the modes that contributed to the interference spectrum, Fourier analysis was done and the spatial frequency versus normalized intensity plot showed that LP02 was the excited dominant higher order cladding mode. Coefficient matrix was realized for simultaneous measurement of strain and temperature ability of such an MZI. For discrete measurements, a resolution of 0.79 °C in temperature and 1.18 micro-strain can be achieved for 10 pm wavelength resolution. This extremely simple, low-cost sensor easily fabricated with good repeatability is a good candidate in diverse sensing applications

    Capacity of wavelength and time division multiplexing for quasi-distributed measurement using fiber bragg gratings

    Get PDF
    In this paper, an analysis of the use of wavelength and time division multiplexing techniques for quasi-distributed measurement in uniform fiber Bragg gratings is presented. To date, publications have concentrated on the determination of the maximum number of fiber Bragg gratings on one optical fiber using wavelength and time division multiplexing. In this paper, these techniques will be extended to determine the spectral width of wavelength division multiplexing in terms of the spectral width of the light emitting diode, the spectral width of the Bragg gratings, the measurement ranges of the individual sensors, and the guard band between two adjacent Bragg gratings. For time division multiplexing, a description of the time and power conditions are given. In particular the reflected power, first order crosstalk and chromatic dispersion have been considered. Finally, these relationships were applied to verify a design in a simulation using OptiSystem software

    Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array

    No full text
    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears

    Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array

    No full text
    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears
    corecore