31 research outputs found

    Acute skin toxicity associated with a 1-week schedule of whole breast radiotherapy compared with a standard 3-week regimen delivered in the UK FAST-Forward Trial

    Get PDF
    BACKGROUND AND PURPOSE: FAST-Forward is a phase 3 clinical trial testing a 1-week course of whole breast radiotherapy against the UK standard 3-week regimen after primary surgery for early breast cancer. Two acute skin toxicity substudies were undertaken to test the safety of the test schedules with respect to early skin reactions. MATERIAL AND METHODS: Patients were randomly allocated to 40Gy/15 fractions (F)/3-weeks, 27Gy/5F/1-week or 26Gy/5F/1-week. Acute breast skin reactions were graded using RTOG (first substudy) and CTCAE criteria v4.03 (second substudy) weekly during treatment and for 4weeks after treatment ended. Primary endpoint was the proportion of patients within each treatment group with grade ⩾3 toxicity (RTOG and CTCAE, respectively) at any time from the start of radiotherapy to 4weeks after completion. RESULTS: 190 and 162 patients were recruited. In the first substudy, evaluable patients with grade 3 RTOG toxicity were: 40Gy/15F 6/44 (13.6%); 27Gy/5F 5/51 (9.8%); 26Gy/5F 3/52 (5.8%). In the second substudy, evaluable patients with grade 3 CTCAE toxicity were: 40Gy/15F 0/43; 27Gy/5F 1/41 (2.4%); 26Gy/5F 0/53. CONCLUSIONS: Acute breast skin reactions with two 1-week schedules of whole breast radiotherapy under test in FAST-Forward were mild

    Ki67 Is an Independent Predictor of Recurrence in the Largest Randomized Trial of 3 Radiation Fractionation Schedules in Localized Prostate Cancer

    Get PDF
    Purpose: To assess whether the cellular proliferation marker Ki67 provides prognostic information and predicts response to radiation therapy fractionation in patients with localized prostate tumors participating in a randomized trial of 3 radiation therapy fractionation schedules (74 Gy/37 fractions vs 60 Gy/20 fractions vs 57 Gy/19 fractions). Methods and Materials: A matched case–control study design was used; patients with biochemical/clinical failure >2 years after radiation therapy (BCR) were matched 1:1 to patients without recurrence using established prognostic factors (Gleason score, prostate-specific antigen, tumor stage) and fractionation schedule. Immunohistochemistry was used to stain diagnostic biopsy specimens for Ki67, which were scored using the unweighted global method. Conditional logistic regression models estimated the prognostic value of mean and maximum Ki67 scores on BCR risk. Biomarker–fractionation interaction terms determined whether Ki67 was predictive of BCR by fractionation. Results: Using 173 matched pairs, the median for mean and maximum Ki67 scores were 6.6% (interquartile range, 3.9%-9.8%) and 11.0% (interquartile range, 7.0%-15.0%) respectively. Both scores were significant predictors of BCR in models adjusted for established prognostic factors. Conditioning on matching variables and age, the odds of BCR were estimated to increase by 9% per 1% increase in mean Ki67 score (odds ratio 1.09; 95% confidence interval 1.04-1.15, P =.001). Interaction terms between Ki67 and fractionation schedules were not statistically significant. Conclusions: Diagnostic Ki67 did not predict BCR according to fractionation schedule in CHHiP; however, it was a strong independent prognostic factor for BCR

    TP53 modulates radiotherapy fraction size sensitivity in normal and malignant cells

    Get PDF
    Recent clinical trials in breast and prostate cancer have established that fewer, larger daily doses (fractions) of radiotherapy are safe and effective, but these do not represent personalised dosing on a patient-by-patient basis. Understanding cell and molecular mechanisms determining fraction size sensitivity is essential to fully exploit this therapeutic variable for patient benefit. The hypothesis under test in this study is that fraction size sensitivity is dependent on the presence of wild-type (WT) p53 and intact non-homologous end-joining (NHEJ). Using single or split-doses of radiation in a range of normal and malignant cells, split-dose recovery was determined using colony-survival assays. Both normal and tumour cells with WT p53 demonstrated significant split-dose recovery, whereas Li-Fraumeni fibroblasts and tumour cells with defective G1/S checkpoint had a large S/G2 component and lost the sparing effect of smaller fractions. There was lack of split-dose recovery in NHEJ-deficient cells and DNA-PKcs inhibitor increased sensitivity to split-doses in glioma cells. Furthermore, siRNA knockdown of p53 in fibroblasts reduced split-dose recovery. In summary, cells defective in p53 are less sensitive to radiotherapy fraction size and lack of split-dose recovery in DNA ligase IV and DNA-PKcs mutant cells suggests the dependence of fraction size sensitivity on intact NHEJ

    Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial.

    Get PDF
    BACKGROUND: We aimed to identify a five-fraction schedule of adjuvant radiotherapy (radiation therapy) delivered in 1 week that is non-inferior in terms of local cancer control and is as safe as an international standard 15-fraction regimen after primary surgery for early breast cancer. Here, we present 5-year results of the FAST-Forward trial. METHODS: FAST-Forward is a multicentre, phase 3, randomised, non-inferiority trial done at 97 hospitals (47 radiotherapy centres and 50 referring hospitals) in the UK. Patients aged at least 18 years with invasive carcinoma of the breast (pT1-3, pN0-1, M0) after breast conservation surgery or mastectomy were eligible. We randomly allocated patients to either 40 Gy in 15 fractions (over 3 weeks), 27 Gy in five fractions (over 1 week), or 26 Gy in five fractions (over 1 week) to the whole breast or chest wall. Allocation was not masked because of the nature of the intervention. The primary endpoint was ipsilateral breast tumour relapse; assuming a 2% 5-year incidence for 40 Gy, non-inferiority was predefined as ≤1·6% excess for five-fraction schedules (critical hazard ratio [HR] of 1·81). Normal tissue effects were assessed by clinicians, patients, and from photographs. This trial is registered at isrctn.com, ISRCTN19906132. FINDINGS: Between Nov 24, 2011, and June 19, 2014, we recruited and obtained consent from 4096 patients from 97 UK centres, of whom 1361 were assigned to the 40 Gy schedule, 1367 to the 27 Gy schedule, and 1368 to the 26 Gy schedule. At a median follow-up of 71·5 months (IQR 71·3 to 71·7), the primary endpoint event occurred in 79 patients (31 in the 40 Gy group, 27 in the 27 Gy group, and 21 in the 26 Gy group); HRs versus 40 Gy in 15 fractions were 0·86 (95% CI 0·51 to 1·44) for 27 Gy in five fractions and 0·67 (0·38 to 1·16) for 26 Gy in five fractions. 5-year incidence of ipsilateral breast tumour relapse after 40 Gy was 2·1% (1·4 to 3·1); estimated absolute differences versus 40 Gy in 15 fractions were -0·3% (-1·0 to 0·9) for 27 Gy in five fractions (probability of incorrectly accepting an inferior five-fraction schedule: p=0·0022 vs 40 Gy in 15 fractions) and -0·7% (-1·3 to 0·3) for 26 Gy in five fractions (p=0·00019 vs 40 Gy in 15 fractions). At 5 years, any moderate or marked clinician-assessed normal tissue effects in the breast or chest wall was reported for 98 of 986 (9·9%) 40 Gy patients, 155 (15·4%) of 1005 27 Gy patients, and 121 of 1020 (11·9%) 26 Gy patients. Across all clinician assessments from 1-5 years, odds ratios versus 40 Gy in 15 fractions were 1·55 (95% CI 1·32 to 1·83, p<0·0001) for 27 Gy in five fractions and 1·12 (0·94 to 1·34, p=0·20) for 26 Gy in five fractions. Patient and photographic assessments showed higher normal tissue effect risk for 27 Gy versus 40 Gy but not for 26 Gy versus 40 Gy. INTERPRETATION: 26 Gy in five fractions over 1 week is non-inferior to the standard of 40 Gy in 15 fractions over 3 weeks for local tumour control, and is as safe in terms of normal tissue effects up to 5 years for patients prescribed adjuvant local radiotherapy after primary surgery for early-stage breast cancer. FUNDING: National Institute for Health Research Health Technology Assessment Programme

    Correlation between DNA damage responses of skin to a test dose of radiation and late adverse effects of earlier breast radiotherapy

    Get PDF
    Aim: To correlate residual double strand breaks (DSB) 24 h after 4 Gy test doses to skin in vivo and to lymphocytes in vitro with adverse effects of earlier breast radiotherapy (RT). Patients and methods: Patients given whole breast RT P5 years earlier were identified on the basis of moderate/marked or minimal/no adverse effects despite the absence (‘RT-Sensitive’, RT-S) or presence (‘RT-Resistant’, RT-R) of variables predisposing to late adverse effects. Residual DSB were quantified in skin 24 h after a 4 Gy test dose in 20 RT-S and 15 RT-R patients. Residual DSB were quantified in lymphocytes irradiated with 4 Gy in vitro in 30/35 patients. Results: Mean foci per dermal fibroblast were 3.29 (RT-S) vs 2.80 (RT-R) (p = 0.137); 3.28 (RT-S) vs 2.60 (RT-R) in endothelium (p = 0.158); 2.50 (RT-S) vs 2.41 (RT-R) in suprabasal keratinocytes (p = 0.633); 2.70 (RT-S) vs 2.35 (RT-R) in basal epidermis (p = 0.419); 12.1 (RT-S) vs 10.3 (RT-R) in lymphocytes (p = 0.0052). Conclusions: Residual DSB in skin following a 4 Gy dose were not significantly associated with risk of late adverse effects of breast radiotherapy, although exploratory analyses suggested an association in severely affected individuals. By contrast, a significant association was detected based on the in vitro response of lymphocytes

    FFPE breast tumour blocks provide reliable sources of both germline and malignant DNA for investigation of genetic determinants of individual tumour responses to treatment

    Get PDF
    Background: Bio-banked formalin-fixed paraffin-embedded (FFPE) tissues provide an excellent opportunity for translational genomic research. Historically matched blood has not always been collected as a source of germline DNA. This project aimed to establish if normal FFPE breast tissue could be used as an alternative to blood. Methods: Exome sequencing was carried out on matched tumour tissue, normal breast tissue and blood on five patients in the START trial. Retrieved samples had been archived at different centres for at least 13 years. Following tissue macro-dissection and DNA extraction, targeted exome capture was performed using SureSelect Human All Exome v5 reagents (Agilent). Illumina paired-end libraries were prepared from the captured target regions and sequenced on a HiSeq2500 (Illumina) acquiring 2 × 75 bp reads. Somatic variants were called using the MuTect software analysis tool and copy number abnormalities (CNA) were identified using CNVkit. Targeted sequencing and droplet digital PCR were used to validate somatic variants and CNA, respectively. Results: Overlap of somatic variants and CNA called on tumour versus blood and tumour versus normal breast tissue was good. Agreement in somatic variant calling ranged from 76.9 to 93.6%. Variants with an allele frequency lower than 10% were more difficult to validate irrespective of the type of germline DNA used. Pearson’s correlation coefficients for paired comparisons of CNA using blood or normal tissue as reference ranged from 0.70 to 0.94. Conclusions: There is good correlation between the somatic mutations and CNA called using archived blood or normal breast tissue as germline reference material

    Investigating the role of DNA double strand break repair in determining sensitivity to radiotherapy fraction size

    No full text
    The dose of curative radiotherapy (RT) for cancer is commonly limited by adverse effects presenting years later. Late reacting normal tissues are, on average, more sensitive to the size of daily doses (fractions) than early reacting normal tissues and cancers. Clinical trials have shown breast cancers to be one exception to this rule, in that they are as sensitive to fraction size as the late reacting normal tissues. This has led to the adoption of hypofractionation (use of fractions &gt;2.0 Gy) in the UK for the adjuvant therapy of women with early breast cancer. An understanding of the molecular basis of fraction size sensitivity is necessary to improve radiotherapy outcome. In this respect, it is relevant that late reacting normal tissues have lower proliferative indices than early reacting normal tissues and most cancers. Here, we test the hypothesis that tissue sensitivity to fraction size is determined by the DNA repair systems activated in response to DNA double strand breaks (DSB), and that these systems vary according to the proliferative status of the tissue. Clinical data suggest that sensitivity of epidermis to fraction size varies over a 5-week course of RT. It resembles a late reacting normal tissue in its sensitivity to fraction size in the first week of RT and loses fractionation sensitivity by weeks 4 &amp; 5. We used this feature of human epidermis to test how fractionation sensitivity and DNA repair changed over 5 weeks of RT. Breast skin biopsies were collected 2 h after the 1st, 5th and last fractions from 30 breast cancer patients prescribed 50 Gy/25fractions/5weeks. Sections of epidermis were co-stained for Ki67, cyclin A, p21, RAD51, 53BP1 and β1-Integrin. After 5 weeks of radiotherapy, the mean basal Ki67 density increased from 5.72 to 15.46 cells per mm of basement membrane (p=0.002), of which the majority were in S/G2 phase as judged by cyclin A staining (p&lt;0.0003). The p21 index rose from 2.8% to 87.4% (p&lt;0.0001) after 25 fractions, indicating cell cycle arrest in the basal epidermis. By week 5, there was a 4-fold increase (p=0.0003) in the proportion of Ki67-positive cells showing RAD51 foci, confirming an association between activation of homologous recombination (HR) and loss of tissue fractionation sensitivity. Subsequently, CHO cell lines deficient in specific DNA repair genes were used to test molecular pathways involved in sensitivity to fraction size. We irradiated AA8 (WT), irs-1SF (XRCC3-), V3-3 (DNA-PK-) and EM9 (XRCC1-) with 16 Gy gamma-rays in 1 Gy daily fractions over 3 weeks or 16 Gy in 4 Gy daily fractions over 4 days, and studied clonogenic survival, DNA double-strand break (DSB) repair kinetics (RAD51 &amp; 53BP1 staining) and cell cycle analysis using flow cytometry. We found that wild-type and DNA repair defective cells acquire resistance to fractionated radiotherapy by accumulation in the late S/G2 phase of the cell cycle and increased use of HR. In contrast, the irs1SF cells, defective in HR, failed to acquire radioresistance and remained equally sensitive to ionizing radiation throughout the 3-week treatment. We also demonstrated that sensitivity to fraction size is associated with functional NHEJ. It was undetectable in V3-3 cells lacking NHEJ and thereby likely relying on HR. The high fidelity of HR, which is independent of induced DNA damage levels and hence, of fraction size, may explain the low fractionation sensitivity of cells using HR to repair radiation induced DSBs. We then wanted to investigate the modifying effects of small molecule inhibitors of DNA repair on fractionation responses. To this end we tested the effects of adding selected ATM, PARP, and DNAPK inhibitors to fractionated radiotherapy in WT CHO cells. Our results showed that the ATM inhibitor had a significant radiosensitising effect when combined with fractionated RT and resulted in loss of sparing effect of fractionation in wild type CHO cells, an observation that may be clinically relevant. We also examined DNA DSB repair kinetics (RAD51 &amp; 53BP1 foci) with these drugs in the context of fractionated IR.</p

    Genomic and Histopathological Tissue Biomarkers That Predict Radiotherapy Response in Localised Prostate Cancer

    No full text
    Localised prostate cancer, in particular, intermediate risk disease, has varied survival outcomes that cannot be predicted accurately using current clinical risk factors. External beam radiotherapy (EBRT) is one of the standard curative treatment options for localised disease and its efficacy is related to wide ranging aspects of tumour biology. Histopathological techniques including immunohistochemistry and a variety of genomic assays have been used to identify biomarkers of tumour proliferation, cell cycle checkpoints, hypoxia, DNA repair, apoptosis, and androgen synthesis, which predict response to radiotherapy. Global measures of genomic instability also show exciting capacity to predict survival outcomes following EBRT. There is also an urgent clinical need for biomarkers to predict the radiotherapy fraction sensitivity of different prostate tumours and preclinical studies point to possible candidates. Finally, the increased resolution of next generation sequencing (NGS) is likely to enable yet more precise molecular predictions of radiotherapy response and fraction sensitivity

    Investigating the role of DNA double strand break repair in determining sensitivity to radiotherapy fraction size

    No full text
    The dose of curative radiotherapy (RT) for cancer is commonly limited by adverse effects presenting years later. Late reacting normal tissues are, on average, more sensitive to the size of daily doses (fractions) than early reacting normal tissues and cancers. Clinical trials have shown breast cancers to be one exception to this rule, in that they are as sensitive to fraction size as the late reacting normal tissues. This has led to the adoption of hypofractionation (use of fractions >2.0 Gy) in the UK for the adjuvant therapy of women with early breast cancer. An understanding of the molecular basis of fraction size sensitivity is necessary to improve radiotherapy outcome. In this respect, it is relevant that late reacting normal tissues have lower proliferative indices than early reacting normal tissues and most cancers. Here, we test the hypothesis that tissue sensitivity to fraction size is determined by the DNA repair systems activated in response to DNA double strand breaks (DSB), and that these systems vary according to the proliferative status of the tissue. Clinical data suggest that sensitivity of epidermis to fraction size varies over a 5-week course of RT. It resembles a late reacting normal tissue in its sensitivity to fraction size in the first week of RT and loses fractionation sensitivity by weeks 4 & 5. We used this feature of human epidermis to test how fractionation sensitivity and DNA repair changed over 5 weeks of RT. Breast skin biopsies were collected 2 h after the 1st, 5th and last fractions from 30 breast cancer patients prescribed 50 Gy/25fractions/5weeks. Sections of epidermis were co-stained for Ki67, cyclin A, p21, RAD51, 53BP1 and β1-Integrin. After 5 weeks of radiotherapy, the mean basal Ki67 density increased from 5.72 to 15.46 cells per mm of basement membrane (p=0.002), of which the majority were in S/G2 phase as judged by cyclin A staining (p Subsequently, CHO cell lines deficient in specific DNA repair genes were used to test molecular pathways involved in sensitivity to fraction size. We irradiated AA8 (WT), irs-1SF (XRCC3-), V3-3 (DNA-PK-) and EM9 (XRCC1-) with 16 Gy gamma-rays in 1 Gy daily fractions over 3 weeks or 16 Gy in 4 Gy daily fractions over 4 days, and studied clonogenic survival, DNA double-strand break (DSB) repair kinetics (RAD51 & 53BP1 staining) and cell cycle analysis using flow cytometry. We found that wild-type and DNA repair defective cells acquire resistance to fractionated radiotherapy by accumulation in the late S/G2 phase of the cell cycle and increased use of HR. In contrast, the irs1SF cells, defective in HR, failed to acquire radioresistance and remained equally sensitive to ionizing radiation throughout the 3-week treatment. We also demonstrated that sensitivity to fraction size is associated with functional NHEJ. It was undetectable in V3-3 cells lacking NHEJ and thereby likely relying on HR. The high fidelity of HR, which is independent of induced DNA damage levels and hence, of fraction size, may explain the low fractionation sensitivity of cells using HR to repair radiation induced DSBs. We then wanted to investigate the modifying effects of small molecule inhibitors of DNA repair on fractionation responses. To this end we tested the effects of adding selected ATM, PARP, and DNAPK inhibitors to fractionated radiotherapy in WT CHO cells. Our results showed that the ATM inhibitor had a significant radiosensitising effect when combined with fractionated RT and resulted in loss of sparing effect of fractionation in wild type CHO cells, an observation that may be clinically relevant. We also examined DNA DSB repair kinetics (RAD51 & 53BP1 foci) with these drugs in the context of fractionated IR.This thesis is not currently available in ORA
    corecore