149 research outputs found

    Dengue vaccine development: Global and Indian scenarios

    Get PDF
    India is home to nearly a third of the global population at risk of dengue, a viral disease caused by four antigenically and genetically distinct dengue viruses. Clinical illness following dengue virus infection can either be mild and self-limiting dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome, with potentially fatal consequences. A live attenuated vaccine known as Dengvaxia, developed by Sanofi, was licensed in 2015. Following this, long-term follow-up of the Sanofi phase III efficacy trial participants has revealed potential safety concerns. This vaccine, which appears to predispose dengue-naïve recipients to an increased risk of hospitalization in the future, is recommended by the World Health Organization only for adults with a history of prior dengue virus infection. A safe and efficacious dengue vaccine continues to be sought globally. India has joined these efforts in recent years, and is poised to initiate the clinical development of two candidates in the near future, one licensed from abroad and the other developed indigenously. This article provides a glimpse of India's efforts to develop dengue vaccines in the context of the global dengue vaccine development and evaluation landscape and highlights key issues and questions confronting the dengue vaccine community. Keywords: Dengue, DSV4, Pichia pastoris, ADE, Dengvaxi

    A Novel Hybrid Approach for Fast Block Based Motion Estimation

    Get PDF
    The current work presents a novel hybrid approach for motion estimation of various video sequences with a purpose to speed up the entire process without affecting the accuracy. The method integrates the dynamic Zero motion pre-judgment (ZMP) technique with Initial search centers (ISC) along with half way search termination and Small diamond search pattern. Calculation of the initial search centers has been shifted after the process of zero motion pre-judgment unlike most the previous approaches so that the search centers for stationary blocks need not be identified. Proper identification of ISC dismisses the need to use any fast block matching algorithm (BMA) to find the motion vectors (MV), rather a fixed search pattern such as small diamond search pattern is sufficient to use. Half way search termination has also been incorporated into the algorithm which helps in deciding whether the predicted ISC is the actual MV or not which further reduced the number of computations. Simulation results of the complete hybrid approach have been compared to other standard methods in the field. The method presented in the manuscript ensures better video quality with fewer computations

    The murine charged multivesicular body protein 2A, CHMP2A interacts with the 5’ and 3’ terminal regions of dengue virus complementary minus-strand RNA

    Get PDF
    Dengue (DEN) viruses, of which there are four distinct serotypes (DEN-1, -2, -3 and –4), belong to the Flaviviridae family. Their ‘plus’ sense RNA genomes contain Non-Translated Regions (NTRs) at their 5’ and 3’ ends. Replication of viral genomic RNA, which takes place in close association with host cell membranes, involves the initial synthesis of the complementary minus sense RNA intermediate. The NTRs, which have the potential to form stable stem-loop structures, are implicated to play a key role in the viral life cycle through binding to viral and/or host proteins. We have screened a mouse macrophage cDNA expression library with a mixture of radioactive plus and minus sense DEN-2 virus NTR transcripts and identified a ∼25 kDa protein. A BLAST analysis of the cDNA sequence encoding this protein showed it to be identical to human CHarged Multivesicular body Protein 2A, CHMP2A (also known as CHromatin Modifying Protein 2A), implicated in sorting proteins into endosome-derived vesicles. Recombinant murine CHMP2A was expressed in E. coli as a 6x His tagged protein, purified to homogeneity and shown to interact preferentially with the minus sense 5’ and 3’ NTRs of all four DEN virus serotypes. Using DEN-2 virus 5’ (-) and 3’ (-) NTRs we could demonstrate the specificity of this binding activity in vitro by ultraviolet cross-linking and electrophoretic mobility shift assays, carried out in the absence and presence of specific and nonspecific competitors. Finally, this unique RNA/protein interaction was verified in vivo using a yeast based interaction assay

    An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes

    Get PDF
    Background: Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by Dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. Results: This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Conclusion: Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective tetravalent dengue vaccines

    High affinity mouse-human chimeric Fab against hepatitis B surface antigen

    Get PDF
    Aim: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody. Methods: We cloned the VH and VL genes of this mouse antibody, and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. coli. Results: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal. This chimeric antibody fragment was further expressed in different strains of E. coli to increase the yield. Conclusion: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a full-length chimeric antibody for therapeutic uses

    Virus-like particle production with yeast: ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification.</p> <p>Results</p> <p>High level production of HBsAg was carried out with recombinant <it>Pichia pastoris </it>using the methanol inducible <it>AOX1 </it>expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell.</p> <p>Conclusions</p> <p>It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.</p

    Europium nanoparticle-based high performing immunoassay for the screening of treponemal antibodies

    Get PDF
    Treponema pallidum subspecies pallidum (Tp) is the causative agent of syphilis which mainly spreads through sexual contact, blood transfusion and perinatal route. In order to curtail the spread of the infection and to clinically manage the disease, timely, accurate and reliable diagnosis is very important. We have developed an immunoassay for the detection of treponemal antibodies in human serum or plasma samples. In vivo biotinylated and non-biotinylated versions of the recombinant antigen were designed by the fusion of three Tp-specific antigens namely Tp15, Tp17 and Tp47. These fusion antigens were expressed in E. coli and purified using single-step metal affinity chromatography. Biotinylated fusion antigen immobilized on streptavidin coated plate was used to capture the treponemal antibodies and the non-biotinylated antigen coated on europium nanoparticles was used as tracer. Assays with two different incubation times of 10 min and 1 h were developed, and following the incubation the europium fluorescence was measured using time-resolved fluorometry. The developed Time-resolved Fluorometric (TRF) immunoassays were evaluated with in-house and commercial serum/plasma sample panels. For well-established treponemal antibodies positive or negative samples, the sensitivity of TRF immunoassay with 10 min incubation time was 97.4% and of TRF immunoassay with 1 h incubation time was 98.7% and the specificities of both the TRF immunoassays were 99.2%. For the samples with discordant results with the reference assays, both the TRF immunoassays showed better specificity than the Enzygnost syphilis enzyme immunoassay as a screening test. The two different incubation times did not have any significant effect on the signal to cutoff (S/Co) ratios obtained with the two immunoassays (p  =  0.06). Our results indicate that the developed immunoassay with a short incubation time of 10 min has the potential to be used in clinical laboratories and in blood-bank settings as a screening test for treponemal antibodies

    Enhanced cell density cultivation and rapid expression-screening of recombinant Pichia pastoris clones in microscale

    Get PDF
    Cultivation of yeast Pichia pastoris in the microtiter plate, for optimisation of culture conditions, and expression screening of transformants has gained significance in recent years. However, in the microtiter plate, it has been challenging to attain cell densities similar to well-aerated shake-flask culture, due to the poor mixing resulting in oxygen limitation. To solve this problem, we investigated the influence of multiple cultivation parameters on P. pastoris cell growth, including the architecture of 96-deepwell plate (96-DWP), shaking throw diameter, shaking frequency, culture volume/well, and media composition. In the optimised conditions, a cell density of OD600 ~50 (dry cell weight ~13 g/L) with >99% cell viability was achieved in the casamino acids supplemented buffered-minimal-media in 300 to 1000 μl culture volume/well. We have devised a simplified method for coating of the culture supernatant on the polystyrene surface for immunoassay. Clones for secretory expression of envelope domain III of dengue virus serotype-1 under the control of inducible and constitutive promoter were screened using the developed method. Described microscale cultivation strategy can be used for rapid high-throughput screening of P. pastoris clones, media optimization, and high-throughput recombinant protein production. The knowledge gained through this work may also be applied, to other suspension cultures, with some modifications.</p

    Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris

    Get PDF
    Background: Dengue is a viral disease spread to humans by mosquitoes. Notably, there are four serotypes of Dengue Viruses (DENV) that places &#8764;40% of the global population at risk of infection. However, lack of a suitable drug or a preventive vaccine exacerbates the matter further. Envelope Domain-III (EDIII) antigen of Dengue Virus (DENV) has garnered much attention as a promising vaccine candidate for dengue, in addition to its use as a diagnostic intermediate. Hence developing a method for efficient production of high quality recombinant EDIII is important for research and industrial purpose. Results: In this work, a Pichia pastoris system was optimized for the secretory over-expression of DENV serotype-3 EDIII under the control of methanol inducible AOX1 promoter. Temperature alone had a significant impact upon the amount of secretory EDIII, with 2.5-fold increase upon reducing the induction temperature from 30 to 20 °C. However surprisingly, supplementation of culture media with Casamino Acids (CA), further augmented secretory EDIII titer, with a concomitant drop of intracellular EDIII levels at both temperatures. Though, reduction in intracellular retention of EDIII was more prominent at 20°C than 30°C. This suggests that CA supplementation facilitates overexpressing P. pastoris cells to secrete more EDIII by reducing the proportion retained intracellularly. Moreover, a bell-shaped correlation was observed between CA concentration and secretory EDIII titer. The maximum EDIII expression level of 187 mg/L was achieved under shake flask conditions with induction at 20°C in the presence of 1% CA. The overall increase in EDIII titer was &#8764;9-fold compared to un-optimized conditions. Notably, mouse immune-sera, generated using this purified EDIII antigen, efficiently neutralized the DENV. Conclusions: The strategy described herein could enable fulfilling the mounting demand for recombinant EDIII as well as lay direction to future studies on secretory expression of recombinant proteins in P. pastoris with CA as a media supplement

    Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: Catabolic adaptation, stress responses, and autophagic processes

    Get PDF
    Background: Pichia pastoris is an established eukaryotic host for the production of recombinant proteins. Most often, protein production is under the control of the strong methanol-inducible aox1 promoter. However, detailed information about the physiological alterations in P. pastoris accompanying the shift from growth on glycerol to methanol-induced protein production under industrial relevant conditions is missing. Here, we provide an analysis of the physiological response of P. pastoris GS115 to methanol-induced high-level production of the Hepatitis B virus surface antigen (HBsAg). High product titers and the retention of the protein in the endoplasmic reticulum (ER) are supposedly of major impact on the host physiology. For a more detailed understanding of the cellular response to methanol-induced HBsAg production, the time-dependent changes in the yeast proteome and ultrastructural cell morphology were analyzed during the production process.Results: The shift from growth on glycerol to growth and HBsAg production on methanol was accompanied by a drastic change in the yeast proteome. In particular, enzymes from the methanol dissimilation pathway started to dominate the proteome while enzymes from the methanol assimilation pathway, e.g. the transketolase DAS1, increased only moderately. The majority of methanol was metabolized via the energy generating dissimilatory pathway leading to a corresponding increase in mitochondrial size and numbers. The methanol-metabolism related generation of reactive oxygen species induced a pronounced oxidative stress response (e.g. strong increase of the peroxiredoxin PMP20). Moreover, the accumulation of HBsAg in the ER resulted in the induction of the unfolded protein response (e.g. strong increase of the ER-resident disulfide isomerase, PDI) and the ER associated degradation (ERAD) pathway (e.g. increase of two cytosolic chaperones and members of the AAA ATPase superfamily) indicating that potential degradation of HBsAg could proceed via the ERAD pathway and through the proteasome. However, the amount of HBsAg did not show any significant decline during the cultivation revealing its general protection from proteolytic degradation. During the methanol fed-batch phase, induction of vacuolar proteases (e.g. strong increase of APR1) and constitutive autophagic processes were observed. Vacuolar enclosures were mainly found around peroxisomes and not close to HBsAg deposits and, thus, were most likely provoked by peroxisomal components damaged by reactive oxygen species generated by methanol oxidation.Conclusions: In the methanol fed-batch phase P. pastoris is exposed to dual stress; stress resulting from methanol degradation and stress resulting from the production of the recombinant protein leading to the induction of oxidative stress and unfolded protein response pathways, respectively. Finally, the modest increase of methanol assimilatory enzymes compared to the strong increase of methanol dissimilatory enzymes suggests here a potential to increase methanol incorporation into biomass/product through metabolic enhancement of the methanol assimilatory pathway.DBT (India)BMB
    • …
    corecore