915 research outputs found
Roughness induced boundary slip in microchannel flows
Surface roughness becomes relevant if typical length scales of the system are
comparable to the scale of the variations as it is the case in microfluidic
setups. Here, an apparent boundary slip is often detected which can have its
origin in the assumption of perfectly smooth boundaries. We investigate the
problem by means of lattice Boltzmann (LB) simulations and introduce an
``effective no-slip plane'' at an intermediate position between peaks and
valleys of the surface. Our simulations show good agreement with analytical
results for sinusoidal boundaries, but can be extended to arbitrary geometries
and experimentally obtained surface data. We find that the detected apparent
slip is independent of the detailed boundary shape, but only given by the
distribution of surface heights. Further, we show that the slip diverges as the
amplitude of the roughness increases.Comment: 4 pages, 6 figure
Simulation of fluid flow in hydrophobic rough microchannels
Surface effects become important in microfluidic setups because the surface
to volume ratio becomes large. In such setups the surface roughness is not any
longer small compared to the length scale of the system and the wetting
properties of the wall have an important influence on the flow. However, the
knowledge about the interplay of surface roughness and hydrophobic
fluid-surface interaction is still very limited because these properties cannot
be decoupled easily in experiments.
We investigate the problem by means of lattice Boltzmann (LB) simulations of
rough microchannels with a tunable fluid-wall interaction. We introduce an
``effective no-slip plane'' at an intermediate position between peaks and
valleys of the surface and observe how the position of the wall may change due
to surface roughness and hydrophobic interactions.
We find that the position of the effective wall, in the case of a Gaussian
distributed roughness depends linearly on the width of the distribution.
Further we are able to show that roughness creates a non-linear effect on the
slip length for hydrophobic boundaries.Comment: 10 pages, 5 figure
Longitudinal and transversal flow over a cavity containing a second immiscible fluid
An analytical solution for the flow field of a shear flow over a rectangular
cavity containing a second immiscible fluid is derived. While flow of a
single-phase fluid over a cavity is a standard case investigated in fluid
dynamics, flow over a cavity which is filled with a second immiscible fluid,
has received little attention. The flow filed inside the cavity is considered
to define a boundary condition for the outer flow which takes the form of a
Navier slip condition with locally varying slip length. The slip-length
function is determined from the related problem of lid-driven cavity flow.
Based on the Stokes equations and complex analysis it is then possible to
derive a closed analytical expression for the flow field over the cavity for
both the transversal and the longitudinal case. The result is a comparatively
simple function, which displays the dependence of the flow field on the cavity
geometry and the medium filling the cavity. The analytically computed flow
field agrees well with results obtained from a numerical solution of the
Navier-Stokes equations. The studies presented in this article are of
considerable practical relevance, for example for the flow over
superhydrophobic surfaces.Comment: http://journals.cambridge.or
Tensorial hydrodynamic slip
We describe a tensorial generalization of the Navier slip boundary condition
and illustrate its use in solving for flows around anisotropic textured
surfaces. Tensorial slip can be derived from molecular or microstructural
theories or simply postulated as an constitutive relation, subject to certain
general constraints on the interfacial mobility. The power of the tensor
formalism is to capture complicated effects of surface anisotropy, while
preserving a simple fluid domain. This is demonstrated by exact solutions for
laminar shear flow and pressure-driven flow between parallel plates of
arbitrary and different textures. From such solutions, the effects of rotating
a texture follow from simple matrix algebra. Our results may be useful to
extracting local slip tensors from global measurements, such as the
permeability of a textured channel or the force required to move a patterned
surface, in experiments or simulations.Comment: 10 page
Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system
We consider the spreading of a thin two-dimensional droplet on a planar
substrate as a prototype system to compare the contemporary model for contact
line motion based on interface formation of Shikhmurzaev [Int. J. Multiphas.
Flow 19, 589 (1993)], to the more commonly used continuum fluid dynamical
equations augmented with the Navier-slip condition. Considering quasistatic
droplet evolution and using the method of matched asymptotics, we find that the
evolution of the droplet radius using the interface formation model reduces to
an equivalent expression for a slip model, where the prescribed microscopic
dynamic contact angle has a velocity dependent correction to its static value.
This result is found for both the original interface formation model
formulation and for a more recent version, where mass transfer from bulk to
surface layers is accounted for through the boundary conditions. Various
features of the model, such as the pressure behaviour and rolling motion at the
contact line, and their relevance, are also considered in the prototype system
we adopt.Comment: 45 pages, 18 figure
Hydraulic engineering legends Listed on the Eiffel Tower
While the Eiffel Tower has become a landmark of Paris and France, few know about the names of 72 scientists engraved around the first floor. Herein, the names of 14 hydraulic engineers and scholars are reviewed and their selection is discussed. It is shown that most were leading engineers and lecturers during the French Revolution and early 19th century, and Gustave Eiffel's selection highlighted the influence of leading engineers on the French Society
Effective slip boundary conditions for flows over nanoscale chemical heterogeneities
We study slip boundary conditions for simple fluids at surfaces with
nanoscale chemical heterogeneities. Using a perturbative approach, we examine
the flow of a Newtonian fluid far from a surface described by a heterogeneous
Navier slip boundary condition. In the far-field, we obtain expressions for an
effective slip boundary condition in certain limiting cases. These expressions
are compared to numerical solutions which show they work well when applied in
the appropriate limits. The implications for experimental measurements and for
the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure
Risk management policies and practices regarding radio frequency electromagnetic fields: results from a WHO survey
This study aims to describe current risk management practices and policies across the world in relation to personal exposures from devices emitting radiofrequency fields, environmental exposures from fixed installations and exposures in the work environment. Data from 86 countries representing all WHO regions were collected through a survey. The majority of countries (76.8 %) had set exposure limits for mobile devices, almost all (90.7 %) had set public exposure limits for fixed installations and 76.5 % had specified exposure limits for personnel in occupational settings. A number of other policies had been implemented at the national level, ranging from information provisions on how to reduce personal exposures and restrictions of usage for certain populations, such as children or pregnant women to prevention of access around base stations. This study suggests that countries with higher mobile subscriptions tend to have set radiofrequency exposure limits for mobile devices and to have provisions on exposure measurements about fixed installation
Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator
The composite torsional ultrasonic oscillator, a versatile experimental
system, can be used to investigate slip of Newtonian fluid at a smooth surface.
A rigorous analysis of slip-dependent damping for the oscillator is presented.
Initially, the phenomenon of finite surface slip and the slip length are
considered for a half-space of Newtonian fluid in contact with a smooth,
oscillating solid surface. Definitions are revisited and clarified in light of
inconsistencies in the literature. We point out that, in general oscillating
flows, Navier's slip length b is a complex number. An intuitive velocity
discontinuity parameter of unrestricted phase is used to describe the effect of
slip on measurement of viscous shear damping. The analysis is applied to the
composite oscillator and preliminary experimental work for a 40 kHz oscillator
is presented. The Non-Slip Boundary Condition (NSBC) has been verified for a
hydrophobic surface in water to within ~60 nm of |b|=0 nm. Experiments were
carried out at shear rate amplitudes between 230 and 6800 /s, corresponding to
linear displacement amplitudes between 3.2 and 96 nm.Comment: Revised with minor edits for revie
Effect of Patterned Slip on Micro and Nanofluidic Flows
We consider the flow of a Newtonian fluid in a nano or microchannel with
walls that have patterned variations in slip length. We formulate a set of
equations to describe the effects on an incompressible Newtonian flow of small
variations in slip, and solve these equations for slow flows. We test these
equations using molecular dynamics simulations of flow between two walls which
have patterned variations in wettability. Good qualitative agreement and a
reasonable degree of quantitative agreement is found between the theory and the
molecular dynamics simulations. The results of both analyses show that
patterned wettability can be used to induce complex variations in flow. Finally
we discuss the implications of our results for the design of microfluidic
mixers using slip.Comment: 13 pages, 12 figures, final version for publicatio
- …
