9 research outputs found

    Nature-inspired double corrugated geometry for enhanced heat transfer

    Get PDF

    From a magnet to a heat pump

    Get PDF
    The magnetocaloric effect (MCE) is the thermal response of a magnetic material to an applied magnetic field. Magnetic cooling is a promising alternative to conventional vapor compression technology in near room temperature applications and has experienced significant developments over the last five years. Although further improvements are necessary before the technology can be commercialized.Researchers were mainly focused on the development of materials and optimization of a flow system in order to increase the efficiency of magnetic heat pumps. The project, presented in this paper, is devoted to the improvement of heat pump and cooling technologies through simple tests of prospective regenerator designs. A brief literature review and expected results are presented in the paper. It is mainly focused on MCE technologies and provides a brief introduction to the magnetic cooling as an alternative for conventional vapor compression technology

    Operational test of bonded magnetocaloric plates

    Get PDF
    Bonded plates made by hot pressing La0.85Ce0.15Fe11.25Mn0.25Si1.5Hy particles and resin have been tested as active magnetic regenerators in a small scale magnetocaloric device. Firstly the plates were carefully characterised magnetically and thermally. The plates were prepared with 5 wt% resin, and from density measurements it was found that the volume ratio of the magnetocaloric material in the plates was 0.53, due to the resin and porosity. The best operating conditions for the plate regenerator were determined at which a temperature span of 6.4 K was measured along the plates
    corecore