145 research outputs found

    Cloning quantum entanglement in arbitrary dimensions

    Full text link
    We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of dd-dimensional quantum systems. It maximizes the entanglement of formation contained in the two copies of any maximally-entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of all isotropic states. For large dd, the entanglement of formation of each clone tends to one half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one fourth the input entanglement in the large-dd limit.Comment: 6 pages, 3 figure

    Evolution of a spinor condensate: coherent dynamics, dephasing and revivals

    Full text link
    We present measurements and a theoretical model for the interplay of spin dependent interactions and external magnetic fields in atomic spinor condensates. We highlight general features like quadratic Zeeman dephasing and its influence on coherent spin mixing processes by focusing on a specific coherent superposition state in a F=1 87^{87}Rb Bose-Einstein condensate. In particular, we observe the transition from coherent spinor oscillations to thermal equilibration

    Ghost imaging using homodyne detection

    Get PDF
    We present a theoretical study of ghost imaging based on correlated beams arising from parametric down-conversion, and which uses balanced homodyne detection to measure both the signal and idler fields. We analytically show that the signal-idler correlations contain the full amplitude and phase information about an object located in the signal path, both in the near-field and the far-field case. To this end we discuss how to optimize the optical setups in the two imaging paths, including the crucial point regarding how to engineer the phase of the idler local oscillator as to observe the desired orthogonal quadrature components of the image. We point out an inherent link between the far-field bandwidth and the near-field resolution of the reproduced image, determined by the bandwidth of the source of the correlated beams. However, we show how to circumvent this limitation by using a spatial averaging technique which dramatically improves the imaging bandwidth of the far-field correlations as well as speeds up the convergence rate. The results are backed up by numerical simulations taking into account the finite size and duration of the pump pulse.Comment: 17 pages, 10 figures, submitted to Phys. Rev.

    Cloning a real d-dimensional quantum state on the edge of the no-signaling condition

    Get PDF
    We investigate a new class of quantum cloning machines that equally duplicate all real states in a Hilbert space of arbitrary dimension. By using the no-signaling condition, namely that cloning cannot make superluminal communication possible, we derive an upper bound on the fidelity of this class of quantum cloning machines. Then, for each dimension d, we construct an optimal symmetric cloner whose fidelity saturates this bound. Similar calculations can also be performed in order to recover the fidelity of the optimal universal cloner in d dimensions.Comment: 6 pages RevTex, 1 encapuslated Postscript figur

    Kinetic theory and dynamic structure factor of a condensate in the random phase approximation

    Full text link
    We present the microscopic kinetic theory of a homogeneous dilute Bose condensed gas in the generalized random phase approximation (GRPA), which satisfies the following requirements: 1) the mass, momentum and energy conservation laws; 2) the H-theorem; 3) the superfluidity property and 4) the recovery of the Bogoliubov theory at zero temperature \cite{condenson}. In this approach, the condensate influences the binary collisional process between the two normal atoms, in the sense that their interaction force results from the mediation of a Bogoliubov collective excitation traveling throughout the condensate. Furthermore, as long as the Bose gas is stable, no collision happens between condensed and normal atoms. In this paper, we show how the kinetic theory in the GRPA allows to calculate the dynamic structure factor at finite temperature and when the normal and superfluid are in a relative motion. The obtained spectrum for this factor provides a prediction which, compared to the experimental results, allows to validate the GRPA. PACS numbers:03.75.Hh, 03.75.Kk, 05.30.-dComment: 6 pages, 1 figures, QFS2004 conferenc

    Thermodynamics of a Bose-Einstein Condensate with Weak Disorder

    Full text link
    We consider the thermodynamics of a homogeneous superfluid dilute Bose gas in the presence of weak quenched disorder. Following the zero-temperature approach of Huang and Meng, we diagonalize the Hamiltonian of a dilute Bose gas in an external random delta-correlated potential by means of a Bogoliubov transformation. We extend this approach to finite temperature by combining the Popov and the many-body T-matrix approximations. This approach permits us to include the quasi-particle interactions within this temperature range. We derive the disorder-induced shifts of the Bose-Einstein critical temperature and of the temperature for the onset of superfluidity by approaching the transition points from below, i.e., from the superfluid phase. Our results lead to a phase diagram consistent with that of the finite-temperature theory of Lopatin and Vinokur which was based on the replica method, and in which the transition points were approached from above.Comment: 11 pages, 5 figure

    Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy?

    Get PDF
    Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions

    Quantum spiral bandwidth of entangled two-photon states

    Full text link
    We put forward the concept of quantum spiral bandwidth of the spatial mode function of the two-photon entangled state in spontaneous parametric downconversion. We obtain the bandwidth using the eigenstates of the orbital angular momentum of the biphoton states, and reveal its dependence with the length of the down converting crystal and waist of the pump beam. The connection between the quantum spiral bandwidth and the entropy of entanglement of the quantum state is discussed.Comment: 10 pages, 3 figure
    corecore