3,013 research outputs found

    Susceptibility of a spinon Fermi surface coupled to a U(1) gauge field

    Full text link
    We study the theory of a U(1) gauge field coupled to a spinon Fermi surface. Recently this model has been proposed as a possible description of the organic compound κ−(BEDT−TTF)2Cu2(CN)3\kappa-(BEDT-TTF)_2 Cu_2 (CN)_3. We calculate the susceptibility of this system and in particular examine the effect of pairing of the underlying spin liquid. We show that this proposed theory is consistent with the observed susceptibility measurements.Comment: 5 pages, 4 figure

    Metabasin dynamics and local structure in supercooled water

    Full text link
    We employ the Distance Matrix method to investigate metabasin dynamics in supercooled water. We find that the motion of the system consists in the exploration of a finite region of configuration space (enclosing several distinct local minima), named metabasin, followed by a sharp crossing to a different metabasin. The characteristic time between metabasin transitions is comparable to the structural relaxation time, suggesting that these transitions are relevant for the long time dynamics. The crossing between metabasins is accompanied by very rapid diffusional jumps of several groups of dynamically correlated particles. These particles form relatively compact clusters and act as cooperative relaxing units responsible for the density relaxation. We find that these mobile particles are often characterized by an average coordination larger than four, i.e. are located in regions where the tetrahedral hydrogen bond network is distorted

    A Variational Monte Carlo Study of the Current Carried by a Quasiparticle

    Full text link
    With the use of Gutzwiller-projected variational states, we study the renormalization of the current carried by the quasiparticles in high-temperature superconductors and of the quasiparticle spectral weight. The renormalization coefficients are computed by the variational Monte Carlo technique, under the assumption that quasiparticle excitations may be described by Gutzwiller-projected BCS quasiparticles. We find that the current renormalization coefficient decreases with decreasing doping and tends to zero at zero doping. The quasiparticle spectral weight Z_+ for adding an electron shows an interesting structure in k space, which corresponds to a depression of the occupation number k just outside the Fermi surface. The perturbative corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure

    Brain energy metabolism: conserved functions of glycolytic glial cells

    Get PDF
    The discovery in mammals that axons are metabolically supported by myelinating glial cells explains why neurons can extend meters in length. In this issue, Volkenhoff et al. (2015) show that, in Drosophila, the transfer of lactate from the glial to the neuronal compartment is conserved in evolution, independent of body size

    Configuration space connectivity across the fragile to strong transition in silica

    Full text link
    We present a numerical analysis for SiO_2 of the fraction of diffusive direction f_diff for temperatures T on both sides of the fragile-to-strong crossover. The T-dependence of f_diff clearly reveals this change in dynamical behavior. We find that for T above the crossover (fragile region) the system is always close to ridges of the potential energy surface (PES), while below the crossover (strong region), the system mostly explores the PES local minima. Despite this difference, the power law dependence of f_diff on the diffusion constant, as well as the power law dependence of f_diff on the configurational entropy, shows no change at the fragile to strong crossover

    Transport Properties of a spinon Fermi surface coupled to a U(1) gauge field

    Full text link
    With the organic compound κ\kappa-(BEDT-TTF)2_2-Cu2_2(CN)3_3 in mind, we consider a spin liquid system where a spinon Fermi surface is coupled to a U(1) gauge field. Using the non-equilibrium Green's function formalism, we derive the Quantum Boltzmann Equation (QBE) for this system. In this system, however, one cannot a priori assume the existence of Landau quasiparticles. We show that even without this assumption one can still derive a linearized equation for a generalized distribution function. We show that the divergence of the effective mass and of the finite temperature self-energy do not enter these transport coefficients and thus they are well-defined. Moreover, using a variational method, we calculate the temperature dependence of the spin resistivity and thermal conductivity of this system.Comment: 12 page
    • …
    corecore