Synthesis and Molecular Structure of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTf1} .3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$

Paul M. Nave
Arkansas State University
Mark Draganjac
Arkansas State University
A. W. Cordes
University of Arkansas, Fayetteville
Tosha M. Barclay
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/jaas
Part of the Physical Chemistry Commons

Recommended Citation

Nave, Paul M.; Draganjac, Mark; Cordes, A. W.; and Barclay, Tosha M. (1999) "Synthesis and Molecular Structure of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTf1.3/4} \mathrm{C}_{2}>\mathrm{H}_{4} \mathrm{C1}_{2}$," Journal of the Arkansas Academy of Science: Vol. 53, Article 27.
Available at: http://scholarworks.uark.edu/jaas/vol53/iss1/27

Synthesis and molecular structure of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] 1 \mathrm{OTf} 1 \cdot 3 / 4 \mathrm{C}_{2} \mathbf{H}_{4} \mathrm{C1}_{2}$

Paul M. Nave*, M. Draganjac
Department of Chemistry and Physics
Arkansas State University
State University, AR 72467

A. W. Cordes, Tosha M. Barclay
Department of Chemistry and Biochemistry
University of Arkansas
Fayetteville, AR 72701

*Corresponding Author

The cyclooligomerization of thietane in the presence of metal carbonyl clusters to yield cyclothioethers has been demonstrated by Adams and coworkers (Adams and Falloon, 1995). The reaction of the cyclothioethers, 1,3-dithiane and 1,4 -dithiane, on a single metal species was investigated by Sabo-Etienne, Chaudret, and coworkers, using the $\mathrm{Cp}^{*} \mathrm{Ru}^{+}$moiety (Rondon, et al., 1994). In this paper, we report the synthesis and molecular structure of the $[\mathrm{CpRu}$ $\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}$] OTf1• $3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, continuing our studies of the coordination of sulfur donor ligands to $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+}$.

Syntheses were carried out under a dry nitrogen atmosphere using Schlenk techniques. All other reagents were used as purchased without further purification.

For the synthesis of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTfl} \cdot 3 / 4$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, I, a $0.0506 \mathrm{~g}(0.0744 \mathrm{mmol})$ sample of $\left(\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\text { tht })_{2} \mid \mathrm{OTfl}\right.$ was dissolved in 3 mL of $1,2-$ dichloroethane. A large excess (1 mL) of pentamethylene sulfide was added and the solution stirred under nitrogen for 5 days. The mixture was evaporated under a stream of nitrogen and the solid, yellow residue was recrystallized from 1,2 -dichloroethane. The product was washed with hexane and dried. Yield $=0.0364 \mathrm{~g}, 57.1 \%$.
$\left.\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right) \quad \text { (tht) }\right)_{2}\right]$ OTf1 was prepared from $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}(\right.$ tht $\left.)\right]$ OTFl (Jiang, et al., 1996) by dissolving approx. $1.0 \mathrm{~g}(1.1 \mathrm{mmol})$ of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}(\right.$ tht $\left.)\right] \mathrm{OTf}$ in 20 mL of tetrahydrothiophene, THT. The mixture was refluxed for 2.5 hr . Upon cooling, $\left.\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right) \text { (tht) }\right)_{2}\right]$ OTfl precipitated from solution. The yellow product was filtered, washed with $50: 50$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and dried. Yield $=0.5678 \mathrm{~g}, 46.1 \%$.

The X-Ray structure analysis of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTfl} \cdot 3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, I , is described below. A crystal of I (isolated from the reaction flask) was mounted in a glass capillary. The crystallographic data are given in Table 1. Data were collected at ambient temperature on an Enraf-Nonius CAD-4 diffractometer using MoK α ($\lambda=0.71073 \AA$) graphite-monochromated radiation. A total of 6884 unique reflections was collected using the e-2e scan technique to a maximum 2 e value of 50°. Absorption corrections were made using psi scans data from three reflections. The instrument factor p in the weighting expression $\mathrm{W}^{-1}=\left[0^{2}(\mathrm{I})+\mathrm{pI}^{2}\right] / 4 \mathrm{~F}^{2}$ was 0.05 .

The structure was solved by the Patterson method and refined by full matrix least-squares. All programs used for the solution and refinement were those of the NRC386 (PC version of NRCVAX) package (Gabe, et al., 1989). All nonH atoms were refined with anisotropic displacement parameters except the C atoms of the solvate molecule. H atoms were constrained to idealized positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) with isotropic thermal parameters U equal to 0.01 plus the U of the attached C atom. The solvate molecule was modeled at 0.75 occupancy. The maximum shift for the last cycle of fullmatrix least-squares was 0.00 sigma.

Final atomic coordinates and equivalent thermal parameters for the non-hydrogen atoms are given in Table 2. Selected bond distances and angles are given in Table 3.

Dissolution of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\text { (tht })_{2}{ }^{+}$in $\mathrm{PMS} / 1,2-$ dichloroethane with stirring yields the compound $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTfl} \cdot 3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, I. The structure of I is seen in Fig. 1. The Ru-S distances of 2.363(2) and $2.362(2) \AA$ in I are comparable to the $\mathrm{Ru}-\mathrm{S}$ distances of $2.365(3) \AA$ in $\left(\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{pms})\right] \mathrm{OTf1}$. These distances are slightly longer than the $\mathrm{Ru}-\mathrm{S}$ distance of $2.3459(20) \AA$ in the thietane complex, $\left(\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SC}_{3} \mathrm{H}_{6}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ (Park et al., 1994). In the Os-octaethylporphyrin complexes,

Fig. 1 ORTEP plot of the cation of I (30% probability ellipsoids) showing atom labeling scheme. Hydrogen atoms are omitted for clarity.

Table 1. Crystal and Refinement Data for $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)\right.$ (pms) ${ }_{2}$]OTfl $\cdot 3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl} 2$.

formula	$\mathrm{RuPS}_{3} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{C}_{35.5} \mathrm{H}_{43} \mathrm{Cl}_{1.5}$
fw	856.12
size, mm	0.10, 0.22, 0.48
a, \AA	11.033(4)
b, \AA	11.4395(18)
c, \AA	16.582(2)
$\boldsymbol{\alpha}$, deg	75.858(13)
β, deg	81.48(2)
γ, deg	75.960(18)
V, \AA	1960.1(8)
2θ for cell	16-19
$\mathrm{d}_{\mathrm{cal}}, \mathrm{gcm}^{-3}$	1.45
space group	P_{1}^{-}
Z	2
F000	877.7
abs coef, mm^{-1}	0.73
${ }^{2} \theta$ max, deg	50
$\mathrm{h}, \mathrm{k}, 1$ ranges	0, 13
	-13, 13
	-19, 19
std refl	-4, 0, -3
	-3, 2, -2
	$-2,-3,3$
stds drift, \%	1.1
absorp range	0.87-1.00
refl meas	7278
unique refls	6884
R for merge	0.022
D 36 (I) data	3758
parameters	432
$\mathrm{R}\left(\mathrm{F}^{2}\right)$	0.052
$\mathrm{Rw}\left(\mathbf{F}^{2}\right)$	0.072
GOF	1.10
diff map, $\mathrm{e}^{\AA}{ }^{-3}$	-0.36(107), 0.76(10)

$\mathrm{Os}(\mathrm{OEP})(\mathrm{pms})_{2}$ and $\left[\mathrm{Os}(\mathrm{OEP})(\mathrm{pms})_{2}\right] \mathrm{PF}_{6}$, the $\mathrm{Os}-\mathrm{S}$ distances are $2.352(2)$ and $2.382(2) \AA$, respectively (Scheidt and Nasri, 1995). Slightly longer M-S distances (range: 2.401 to $2.418 \AA$) are observed in the tris $-\mu$-pms compound, $\mathrm{Cl}_{3} \mathrm{~W}$ ($\mathrm{u}-$ $\mathrm{pms})_{3} \mathrm{WCl}_{3}$ (Boorman et al., 1998).

As expected, the pms rings are in the chair configuration. The distances and angles (Table 3) in these sulfur ligands are typical.

The significance of complex I may prove important as a precursor for the preparation of other Ru complexes with weak donor ligands. If pentamethylene sulfide can displace tht from the $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\text { tht })_{2}+$ moiety, similar substitutions using $\left(\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right.$]OTf1 should be possible.

Acknowledgments.-Funding for RuCl_{3} was provided by the A.S.U. Faculty Research Committee and

Table 2. Atomic Parameters (x, y, z) and Beq for $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTfl} \cdot 3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. E.S.D.'s refer to the last digit printed.

							Biso/Beq		
	0.05056		0.2	(6)	0.22157				
P	0.01141	(19)	0.18333	(17)	0.134	(13)		.85	
S1	-0.02942	(19)	0.17440	(18)	0.3438	(13)		3.26	
S2	0.24444	(19)	0.15705	(19)	0.24074	(14)		. 5	10)
S3	0.5117	3)	0.5185	3)	0.2728	2)		5.70	15)
F1	0.5368	(11)	0.7403	9)	0.2686		12.6		7)
F2	0.3920	(11)	0.7360	9)	0.2050				7)
F3	0.3739	(12)	0.6966	9)	0.3349)
O1	0.4090	(10)	0.4698	11)	0.2698				8)
O2	. 5710	(11)	0.4738	(10)	0.3458				7)
O3	. 5947	(12)	0.5257	(10)	0.2012	8)			8
C1	0190	(13)	0.4714	8)	0.2684		6.0	6.0	6
C2	1260	(10)	0.4639	8)	0.2153	9)	5.7		6
C3	0965	(14)	0.4651	9)	0.1364	8)	6.5		7
C4	-0.0262	(14)	0.4701	9)	0.1395	(10)			
C5	-0.0816	(10)	0.4753	8)	0.2198	(10)			7
C6	-0.0488	(10)	0.2512	(10)	0.4297	(6)			6
C7	-0.1124	(12)	0.1815	(11)	0.5092	c)			$7)$
C8	-0.2446	(10)	0.1776	(10)	0.4962	6)			6
	-0.2506	(11)	0.1140	(12)	0.4266	7)			7)
C10	-0.	8)	0.1790	(9)	0.3432	6)			5
C11	-0.0221	7)	0.0289	6)	0.1805	5)			3)
C12	0.0591	8)	-0.0561	8)	0.2346	(c)			4
C13	0.0330	(10)	-0.1719	8)	0.2715	6)			5
C14	-0.0729	(11)	-0.2011	8)	0.2558	7)			6
C15	-0.1525	(10)	-0.1181	9)	0.2033	7)			5
C16	-0.1276	(9)	-0.0053	8)	0.1657	6)			
C17	-0.1179	8)	0.2537	7)	0.0682	5)			
	-0.2283	8)	0.3209	8)	0.1011	6)			
	-0.3311	9)	0.3682	9)	0.0540	7)			
	-0.3234	(10)	0.3473		-0.0249	7			
	-0.2128	(9)	0.2820	8	-0.0584	5)			
	-0.1105	8)	0.2346	7)	-0.0118	5)			
	0.1442	8)	0.1548	7)	0.0577	(5)			
C24	1787	9)	0.2552	8)	0.0017	(5)			
C25	0.2883	(10)	0.2421	(10)	-0.0542	6)			5
C26	0.3605	(9)	0.1267	(11)	-0.0553	6)			6
C2	0.3269	(9)	0.0254	(9)	-0.0009	7)			5
C2	0.2194	8)	0.0396	8)	0.0543	5)			4)
C	0.3722	9)	0.2100	(11)	0.1719	6)			6)
C30	0.4966	9)	0.1212	(11)	0.1917	7)			$6)$
C31	0.5293	9)	0.1135	(10)	0.2790	8)			6
C32	4305	9)	0.0713	(11)	0.3456	6)			$6)$
C33	0.3019	8)	0.1565	(10)	0.3370	6)			5)
C34	0.4441	(14)	0.6778	(14)	0.2716	8)	7.7		8)
CII	0.1566	4)	0.4619	(5)	0.4866	4)			3)
C12	0.3285	6)	0.1894	4)	0.5525	3)			3)
C35	0.3057	(17)	0.4317	(17)	0.5133	(11)	8.0		4)
C36	0.3786	(20)	0.3174	(20)	0.5174	(13)	9.5		

Beq is the Mean of the Principal Axes of the Thermal Ellipsoid

Table 3. Selected Bond Distances and Angles for [CpRu $\left.\left(\mathrm{PPh}_{3}\right)(\mathrm{pms})_{2}\right] \mathrm{OTFl} \cdot 3 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$.

$\underline{\text { Distances (} \AA \text {) }}$		Angles ($\left.{ }^{(}\right)$		
Ru-P	2.321 (2)	P-Ru-S1	93.27	(7)
Ru-S1	2.363 (2)	P-Ru-S2	87.47	(8)
Ru-S2	2.362 (2)	S1-Ru-S2	86.26	(8)
$\mathrm{Ru}-\mathrm{Cl}$	2.224 (9)	Ru -S1-C6	109.1	(4)
Ru -C2	2.215 (9)	Ru-S1-C10	112.2	(3)
$\mathrm{Ru}-\mathrm{C} 3$	2.193 (9)	C6-S1-C10	95.9	(5)
$\mathrm{Ru}-\mathrm{C} 4$	2.154 (10)	Ru-S2-C29	112.5	(4)
Ru -C5	2.180 (9)	Ru-S2-C33	111.0	(3)
S1-C6	1.811 (9)	C29-S2-C33	96.7	(5)
S1-C10	1.813 (9)	S1-C6-C7	111.9	(7)
S2-C29	1.805 (10)	C6-C7-C8	110.9	(9)
S2-C33	1.802 (9)	C7-C8-C9	113.9	(8)
C6-C7	1.533 (15)	C8-C9-C10	111.2	(9)
C7-C8	1.517 (18)	S1-C10-C9	112.1	(7)
C8-C9	1.524 (16)	S2-C29-C30	110.6	(7)
C9-C10	1.521 (14)	C29-C30-C31	112.6	(9)
C29-C30	1.522 (15)	C30-C31-C32	112.0	(8)
C30-C31	1.519 (16)	C31-C32-C33	113.1	(9)
C31-C32	1.509 (15)	S2-C33-C32	110.3	(7)
C32-C33	1.518 (13)			

Competitive Applied Research Grant. We thank Mrs. Betty Pulford for assistance in the manuscript preparation.

Supplementary Material Available

Hydrogen atomic coordinates and isotropic thermal parameters (Table 4S), anisotropic displacement parameters (Table 5S), bond distances and angles (Table 6S), leastsquare planes (Table 7S), observed and calculated structure factors (Table $8 \mathrm{~S}, 35$ pages) are available from the authors upon request.

Literature Cited

Adams, R. D. and S. B. Falloon. 1995. The chemistry of thietane ligands in polynuclear metal carbonyl complexes. Chem. Rev. 95:2587-2598.
Boorman, P. M., N. L. Langdon, V. J. Mozol, M. Parvez and G. P. A. Yap. 1998. Syntheses, crystal structures, spectroscopic characterization, and electrochemical studies of the ditungsten(III) complexes $\mathrm{Cl}_{3} \mathrm{~W}(\mu$ $\mathrm{L}_{3} \mathrm{WCl}_{3}$ and $\left[\mathrm{Cl}_{3} \mathrm{~W}(\mu-\mathrm{L})_{2}(\mu-\mathrm{Cl}) \mathrm{WCl}_{3}\right] \quad(\mathrm{L}=1,4$-dithiane, 1,4 -thioxane, pms $=$ pentamethylene sulfide). C -S bond cleavage of the bridging thioether(s) in $\mathrm{Cl}_{3} \mathrm{~W}(\mu-$ $\mathrm{L}_{3} \mathrm{WCl}_{3}$. Inorg. Chem. 37:6023-6029

Gabe, E. J., Y. LePage, J. P. Charland, F. L. Lee, and P. S. White. 1989. NRCVAX-an interactive program system for structure analysis. J. Appl. Cryst. 22:384-387.
Jiang, Y., M. Draganjac, and A. W. Cordes. 1996. Molecular structure of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}(\right.$ tht $\left.)\right] \mathrm{BF}_{4}$, tht $=$ tetrahydrothiophene. J. Cryst. Chem. 26:657-660.
Park, H., M. Draganjac, S. R. Scott, A. W. Cordes, and G. Eggleton. 1994. The reaction of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+}$ with trimethylenesulfide. Synthesis and molecular and crystal structure of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SC}_{3} \mathrm{H}_{6}\right)\right] \mathrm{CF}_{3} \mathrm{SO}_{3}$. Inorg. Chim. Acta 221:157-160.
Rondon, D., J. Delbeau, X.-D. He, S. Sabo-Etienne, and B. Chaudret. 1994. Activation of carbon-sulfur and carbonchlorine bonds by the electrophilic ruthenium fragment $\mathrm{Ru}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)^{+\prime}$. J. Chem. Soc., Dalton Trans. 1895-1901.
Scheidt, W. R. and H. Nasri. 1995. Synthesis and molecular structures of the redox pair (octaethylporphinato) bis (pentamethylene sulfide) osmium(II) and (octaethylporphinato)bis(pentamethylene sulfide)osmium(III) hexafluorophosphate. Inorg. Chem. 34:2190-2193.

