8 research outputs found

    Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort

    Get PDF
    Previous studies have reported inconsistent results on the effect of anthropometric and lifestyle factors on the risk of developing glioma or meningioma tumours. A prospective cohort of 1.3 million middle-aged women was used to examine these relationships. During 7.7 million women-years of follow-up, a total of 1563 women were diagnosed with a primary incident central nervous system tumour: 646 tumours were classified as glioma and 390 as meningioma. Our results show that height is related to the incidence of all central nervous system tumours with a risk of about 20% per 10 cm increase in height (relative risk=1.19, 95% CI=1.10–1.30 per 10 cm increase in height, P<0.001): the risks did not differ significantly between specified glioma and meningioma. Body mass index (BMI) was also related to central nervous system tumour incidence, with a risk of about 20% per 10 kg m−2 increase in BMI (relative risk=1.17, 95% CI=1.03–1.34 per 10 kg m−2 increase in BMI, P=0.02). Smoking status, alcohol intake, socioeconomic level, parity, age at first birth, and oral contraceptive use were not associated with the risk of glioma or meningioma tumours. In conclusion, for women in the United Kingdom, the incidence of glioma or meningioma tumours increases with increasing height and increasing BMI

    Malignant Tumors of the Central Nervous System

    Get PDF
    Malignant tumors of the central nervous system in adults comprise a heterogeneous group of malignancies, the largest subgroups comprising astrocytomas, ependymomas, and oligodendrogliomas. Glioblastomas are the most common tumor type, and they have dismal prognosis. Due to differences in cell type of origin, as well as pathogenesis, it is plausible that their etiology also differs between tumor types. The etiology of malignant CNS tumors is largely unknown and no occupational risk factors have been definitively identified. High doses of ionizing radiation increase the risk, but in occupational settings the dose levels appear too small to result in discernible excesses. Several studies have assessed possible effect of extremely low frequency and radiofrequency electromagnetic fields, but the results are inconsistent. Increased brain tumor risk has been reported in agricultural workers, but no specific exposure has been linked to them. Pesticides have been analyzed in several studies without showing a clear increase in risk.acceptedVersionPeer reviewe

    Malignant Tumors of the Central Nervous System

    No full text

    Mercury Exposure, Epigenetic Alterations and Brain Tumorigenesis: A Possible Relationship?

    No full text
    corecore