22,914 research outputs found
Dark-Halo Cusp: Asymptotic Convergence
We propose a model for how the buildup of dark halos by merging satellites
produces a characteristic inner cusp, of a density profile \rho \prop r^-a with
a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical
clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of
a<1 exerts tidal compression which prevents local deposit of satellite
material; the satellite sinks intact into the halo center thus causing a rapid
steepening to a>1. Using merger N-body simulations, we learn that this cusp is
stable under a sequence of mergers, and derive a practical tidal mass-transfer
recipe in regions where the local slope of the halo profile is a>1. According
to this recipe, the ratio of mean densities of halo and initial satellite
within the tidal radius equals a given function psi(a), which is significantly
smaller than unity (compared to being 1 according to crude resonance criteria)
and is a decreasing function of a. This decrease makes the tidal mass transfer
relatively more efficient at larger a, which means steepening when a is small
and flattening when a is large, thus causing converges to a stable solution.
Given this mass-transfer recipe, linear perturbation analysis, supported by toy
simulations, shows that a sequence of cosmological mergers with homologous
satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1.
The slope depends only weakly on the fluctuation power spectrum, in agreement
with cosmological simulations. During a long interim period the profile has an
NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough
compact satellite remnants make it intact into the inner halo. In order to
maintain a flat core, satellites must be disrupted outside the core, possibly
as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres
Document Retrieval on Repetitive Collections
Document retrieval aims at finding the most important documents where a
pattern appears in a collection of strings. Traditional pattern-matching
techniques yield brute-force document retrieval solutions, which has motivated
the research on tailored indexes that offer near-optimal performance. However,
an experimental study establishing which alternatives are actually better than
brute force, and which perform best depending on the collection
characteristics, has not been carried out. In this paper we address this
shortcoming by exploring the relationship between the nature of the underlying
collection and the performance of current methods. Via extensive experiments we
show that established solutions are often beaten in practice by brute-force
alternatives. We also design new methods that offer superior time/space
trade-offs, particularly on repetitive collections.Comment: Accepted to ESA 2014. Implementation and experiments at
http://www.cs.helsinki.fi/group/suds/rlcsa
The cosmological origin of the Tully-Fisher relation
We use high-resolution cosmological simulations that include the effects of
gasdynamics and star formation to investigate the origin of the Tully-Fisher
relation in the standard Cold Dark Matter cosmogony. Luminosities are computed
for each model galaxy using their full star formation histories and the latest
spectrophotometric models. We find that at z=0 the stellar mass of model
galaxies is proportional to the total baryonic mass within the virial radius of
their surrounding halos. Circular velocity then correlates tightly with the
total luminosity of the galaxy, reflecting the equivalence between mass and
circular velocity of systems identified in a cosmological context. The slope of
the relation steepens slightly from the red to the blue bandpasses, and is in
fairly good agreement with observations. Its scatter is small, decreasing from
\~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular
cosmological model we explore here seems unable to account for the zero-point
of the correlation. Model galaxies are too faint at z=0 (by about two
magnitudes) if the circular velocity at the edge of the luminous galaxy is used
as an estimator of the rotation speed. The Tully-Fisher relation is brighter in
the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent
observations of z~1 galaxies. We conclude that the slope and tightness of the
Tully-Fisher relation can be naturally explained in hierarchical models but
that its normalization and evolution depend strongly on the star formation
algorithm chosen and on the cosmological parameters that determine the
universal baryon fraction and the time of assembly of galaxies of different
mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters
Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study
Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically 3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat
Low-energy parameters and spin gap of a frustrated spin- Heisenberg antiferromagnet with on the honeycomb lattice
The coupled cluster method is implemented at high orders of approximation to
investigate the zero-temperature phase diagram of the frustrated
spin- ---- antiferromagnet on the honeycomb lattice.
The system has isotropic Heisenberg interactions of strength ,
and between nearest-neighbour, next-nearest-neighbour and
next-next-nearest-neighbour pairs of spins, respectively. We study it in the
case , in the window
that contains the classical tricritical point (at ) of maximal frustration, appropriate to the limiting value of the spin quantum number. We present results for the magnetic
order parameter , the triplet spin gap , the spin stiffness
and the zero-field transverse magnetic susceptibility for the
two collinear quasiclassical antiferromagnetic (AFM) phases with N\'{e}el and
striped order, respectively. Results for and are given for the
three cases , and , while those for
and are given for the two cases and . On
the basis of all these results we find that the spin- and spin-1
models both have an intermediate paramagnetic phase, with no discernible
magnetic long-range order, between the two AFM phases in their phase
diagrams, while for there is a direct transition between them. Accurate
values are found for all of the associated quantum critical points. While the
results also provide strong evidence for the intermediate phase being gapped
for the case , they are less conclusive for the case . On
balance however, at least the transition in the latter case at the striped
phase boundary seems to be to a gapped intermediate state
Supermassive Black Holes and Galaxy Formation
The formation of supermassive black holes (SMBH) is intimately related to
galaxy formation, although precisely how remains a mystery. I speculate that
formation of, and feedback from, SMBH may alleviate problems that have arisen
in our understanding of the cores of dark halos of galaxies.Comment: Talk at conference on Matter in the Universe, March 2001, ISSI Ber
Non-Abelian Chern-Simons-Higgs vortices with a quartic potential
We have constructed numerically non-Abelian vortices in an SU(2)
Chern-Simons-Higgs theory with a quartic Higgs potential. We have analyzed
these solutions in detail by means of improved numerical codes and found some
unexpected features we did not find when a sixth-order Higgs potential was
used. The generic non-Abelian solutions have been generated by using their
corresponding Abelian counterparts as initial guess. Typically, the energy of
the non-Abelian solutions is lower than that of the corresponding Abelian one
(except in certain regions of the parameter space). Regarding the angular
momentum, the Abelian solutions possess the maximal value, although there exist
non-Abelian solutions which reach that maximal value too. In order to classify
the solutions it is useful to consider the non-Abelian solutions with
asymptotically vanishing component of the gauge potential, which may be
labelled by an integer number . For vortex number and above, we have
found uniqueness violation: two different non-Abelian solutions with all the
global charges equal. Finally, we have investigated the limit of infinity Higgs
self-coupling parameter and found a piecewise Regge-like relation between the
energy and the angular momentum.Comment: 9 pages, 13 figure
Height dependence of the penumbral fine-scale structure in the inner solar atmosphere
We studied the physical parameters of the penumbra in a large and
fully-developed sunspot, one of the largest over the last two solar cycles, by
using full-Stokes measurements taken at the photospheric Fe I 617.3 nm and
chromospheric Ca II 854.2 nm lines with the Interferometric Bidimensional
Spectrometer. Inverting measurements with the NICOLE code, we obtained the
three-dimensional structure of the magnetic field in the penumbra from the
bottom of the photosphere up to the middle chromosphere. We analyzed the
azimuthal and vertical gradient of the magnetic field strength and inclination.
Our results provide new insights on the properties of the penumbral magnetic
fields in the chromosphere at atmospheric heights unexplored in previous
studies. We found signatures of the small-scale spine and intra-spine structure
of both the magnetic field strength and inclination at all investigated
atmospheric heights. In particular, we report typical peak-to-peak variations
of the field strength and inclination of G and , respectively, in the photosphere, and of G and
in the chromosphere. Besides, we estimated the vertical
gradient of the magnetic field strength in the studied penumbra: we find a
value of G km between the photosphere and the middle
chromosphere. Interestingly, the photospheric magnetic field gradient changes
sign from negative in the inner to positive in the outer penumbra.Comment: 14 page, 9 figures, accepted for Ap
The Effects of a Photoionizing UV Background on the Formation of Disk Galaxies
We use high resolution N-body/gasdynamical simulations to investigate the
effects of a photoionizing UV background on the assembly of disk galaxies in
hierarchically clustering universes. We focus on the mass and rotational
properties of gas that can cool to form centrifugally supported disks in dark
matter halos of different mass. Photoheating can significantly reduce the
amount of gas that can cool in galactic halos. Depending on the strength of the
UV background field, the amount of cooled gas can be reduced by up to in
systems with circular speeds in the range - \kms. The magnitude of the
effect, however, is not enough to solve the ``overcooling'' problem that
plagues hierarchical models of galaxy formation if the UV background is chosen
to be consistent with estimates based on recent observations of QSO absorption
systems. Photoionization has little effect on the collapse of gas at high
redshift and affects preferentially gas that is accreted at late times. Since
disks form inside-out, accreting higher angular momentum gas at later times,
disks formed in the presence of a UV background have spins that are even
smaller than those formed in simulations that do not include the effects of
photoionization. This exacerbates the angular momentum problem that afflicts
hierarchical models of disk formation. We conclude that photoionization cannot
provide the heating mechanism required to reconcile hierarchically clustering
models with observations. Energy feedback and enrichment processes from the
formation and evolution of stars must therefore be indispensable ingredients
for any successful model of the formation of disk galaxies.Comment: 36 pages, w/ embedded figures, submitted to ApJ. Also available at
http://penedes.as.arizona.edu/~jfn/preprints/dskform.ps.g
- …