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1. Introduction

Since Bénard’s experiments on convection and Rayleigh’s theoretical work in the beginning of

the twentieth century (1)-(2), many experimental, theoretical and numerical works related to

Rayleigh-Bénard convection have been done (3)-(10) and different problems have been posed

depending on what is to be modelled. Classically, heat is applied uniformly from below

and the conductive solution becomes unstable for a critical vertical gradient beyond a certain

threshold.

A setup for natural convection more general than that of uniform heating consists of including

a non-zero horizontal temperature gradient which may be either constant or not (11)-(29).

In those problems a clear difference is marked by the fact that the fluid is simply contained

(11)-(19), where stationary and oscillatory instabilities appear depending on the multiple

parameters present in the problem: properties of the fluid, surface tension effects, heat

exchange with the atmosphere, aspect ratio, dependence of viscosity with temperature, etc.,

and the case where the fluid can flow throughout the boundaries (29), where vortical solutions

can appear reinforcing the relevance of convective mechanisms for the generation of vertical

vortices very similar to those found for some atmospheric phenomena as dust devils or

hurricanes (29)-(31).

The case where the fluid is simply contained displays stationary and oscillatory instabilities.

This problem has been treated from different points of view: experimental (11)-(18) and

theoretical, both with semiexact (20)-(21) and numerical solutions (40)-(28). This case contains

applications to mantle convection when the viscosity is large (45; 52) or it depends on

temperature (19).

There are not experiments yet for the case where a flow throughout the boundaries is allowed,

only observations of atmospheric phenomena (30; 33; 34; 36; 37), and theoretic numerical

results (29; 31).

In this work we will review this physical problem, focusing on the latest problems addressed

by the authors on this topic, where a non-uniform heating is considered in different

geometrical configurations, and we will show the relevant results obtained, some of them

in the context of interesting atmospheric and geophysical phenomena (30; 36; 37).
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2 Will-be-set-by-IN-TECH

2. Theoretical formulation of the problem

The physical set-up (see figure 1) consists of a horizontal fluid layer in a rectangular domain

(19; 45) or a cylindrical annulus (18; 25; 28) between two vertical walls at r = a and r = a + l.

The depth of the domain is d (z coordinate). At z = 0 the imposed temperature gradient takes

the value Tmax at a and the value Tmin at the outer part (a + l). The upper surface is at

temperature T = T0. We define △Tv = Tmax − T0, △Th = Tmax − Tmin and δ = △Th/△Tv.
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Fig. 1. Physical setup for the cylindrical annulus.

From now on we will consider an annular domain, therefore cylindrical coordinates will

be used in the following. The formulation in a rectangular domain and coordinates would

be similar. In the governing equations, u = (ur, uφ, uz) is the velocity field, T is the

temperature, p is the pressure, r is the radial coordinate, and t is the time. They are

expressed in dimensionless form after rescaling: r
′ = r/d, t′ = κt/d2, u

′ = du/κ, p′ =
d2 p/ (ρ0κν) , Θ = (T − T0) /△Tv. Here r is the position vector, κ the thermal diffusivity, ν the

kinematic viscosity of the liquid, and ρ0 the mean density at temperature T0. The domain is

[ā, ā + Γ]× [0, 1]× [0, 2π] where Γ = l/d is the aspect ratio and ā = a/d.

The system evolves according to the mass balance, energy conservation and momentum

equations, which in dimensionless form (with primes now omitted) are,

∇ · u = 0, (1)

∂tΘ + u · ∇Θ = ∇2Θ, (2)

∂tu + (u · ∇) u = Pr
(

−∇p +∇2
u + RΘez

)

, (3)
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where the operators and fields are expressed in cylindrical coordinates and the

Oberbeck-Boussinesq approximation has been used (25), i.e. density is constant except in the

term of gravity, where a linear dependence on temperature is considered. Here ez is the unit

vector in the z direction. The following dimensionless numbers have been introduced: the

Prandtl number Pr = ν/κ, and the Rayleigh number R = gα△Td3/κν, which represents the

effect of buoyancy and in which α is the thermal expansion coefficient and g the gravitational

acceleration. In the case of variable viscosity the laplacian operator in Eq. (3) takes the form

div
(

ν(Θ)
ν0

·
(

∇u + (∇u)t
)

)

, where ν(Θ) = ν0e−ηRΘ.

2.1 Contained fluid

Regarding boundary conditions, several conditions can be considered such as that one where

flow through the boundaries is not permitted. For instance at the lateral walls r = ā and

r = ā + Γ the velocity is zero and an insulating wall is considered,

ur = uφ = ∂ruz = ∂rΘ = 0, on r = ā and r = ā + Γ. (4)

On the top surface, the vertical velocity is zero, the normal derivatives of the rest of

components of the velocity are zero and the temperature is T = T0, that after rescaling become,

∂zur = ∂zuφ = uz = Θ = 0, on z = 1, (5)

and at the bottom

ur = uφ = uz = 0, on z = 0. (6)

For temperature at the bottom we consider a constant horizontal temperature difference, i.e.

a linear profile. Here the horizontal temperature gradient appears,

Θ = θ1(r) on z = 0. (7)

with θ1(r) = 1 − rδ/Γ and a second order polynomial which matches the linear profile such

that ∂rθ1(r) = 0 on r = ā and r = ā + Γ.

The dimensionless equations and boundary conditions contain five external parameters:

R, Γ, Pr, δ, and η.

2.2 Not contained fluid

Regarding boundary conditions, several conditions can be considered like allowing flow

through the boundaries. At the lateral inner wall r = ā the velocity is zero and an insulating

wall is considered,

ur = uφ = uz = ∂rΘ = 0, on r = ā. (8)

At r = ā + Γ, the lateral outer wall, a constant radial velocity is assumed and an insulating

wall is considered,

∂rur = ∂ruφ = ∂ruz = ∂rΘ = 0, on r = ā + Γ. (9)

On the top surface, the velocity is zero and the temperature is T = T0, that after rescaling

become,

ur = uφ = uz = Θ = 0, on z = 1, (10)
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and at the bottom

ur = ∂zuφ = uz = 0, on z = 0. (11)

For temperature at the bottom we consider a variable horizontal temperature gradient through

imposing a Gaussian profile as in Ref. (28),

Θ = 1 − δ(e
( 1

β )
2

− e
( 1

β −( r−ā
Γ
)2 1

β )
2

)/(e
( 1

β )
2

− 1) on z = 0. (12)

The dimensionless equations and boundary conditions contain five external parameters:

R, Γ, Pr, δ, and β.

3. Metodology: search for solutions and their linear stability

We look for stationary axisymmetric solutions of the problem, then, the equations to be solved

are

∇∗ · u = 0, (13)

u · ∇∗Θ = ∇∗2Θ, (14)

(u · ∇∗) u = Pr
(

−∇∗p +∇∗2
u + RΘez

)

, (15)

where ∇∗ = (∂r, 0, ∂z), together with the corresponding boundary conditions.

The time independent solution Ub(r, z) to the stationary problem obtained from equations

(1)-(3) by eliminating the time dependence, is called basic state. It is a non-conductive state

(u �= 0) as soon as δ �= 0. The basic state is considered to be axisymmetric and therefore

depends only on r − z coordinates (i.e. all φ derivatives are zero). The velocity field of the

basic flow is restricted to u = (ur, uφ = 0, uz).
A linear stability analysis of the stationary solutions is performed. Fixed (Γ, δ, Pr, β), the

solution U(r, z, t) = (u, Θ, p)(r, z, t) of (1)-(3) at given R is expressed as

U(r, z, t) = Ub(r, z) + Ũ(r, z)eikφ+λt, (16)

where Ub(r, z) is the base flow for the given (R, Γ, δ, Pr, β) and Ũ(r, z) refers to the

perturbation. We have considered Fourier mode expansions in the angular direction, because

along it boundary conditions are periodic. Introducing (16) into the full system (1)-(3) and

linearizing the resulting system, the following eigenvalue problem in λ is obtained:

∇k · Ũ = 0, (17)

λΘ̃ + Ũ · ∇kΘb + Ub · ∇kΘ̃ = (∇k)2Θ̃, (18)

λŨ +
(

Ũ · ∇k
)

Ub +
(

Ub · ∇k
)

Ũ = Pr
(

−∇k p̃ + (∇k)2Ũ + RΘ̃ez

)

, (19)

where ∇k = (∂r, ik, ∂z), with the corresponding boundary conditions.

The instability is achieved when the real part of the eigenvalue with maximum real part,

λmax(R), changes from a negative value to a positive one as R increases, for a specific wave
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number k. The critical value of R for which λmax(R, k) = 0 is denoted by Rc and the critical

wave number, minimum k for which the bifurcation occurs, by kc.

3.1 Numerical methods

The numerical method is described in detail and tested in Refs. (25; 28). The nonlinearities in

the basic state problem are solved with a Newton method. Each step of the Newton method

and the linear stability analysis have been numerically solved with a Chebyshev collocation

method as explained in Refs. (28; 39; 48). The problem is posed in the primitive variables

formulation, and the use of the same order approximations for velocity and pressure in the

Chebyshev collocation procedure introduces spurious modes for pressure that are solved

by adding convenient boundary conditions (43; 44). In the resulting linear problems any

unknown field x is expanded in Chebyshev polynomials

x
LN =

L−1

∑
l=0

N−1

∑
n=0

ax

lnTl(r)Tn(z). (20)

The corresponding expansions for the four different fields are introduced into the Newton

linearized version of equations (13)-(15) and the corresponding boundary conditions and

evaluated at the Chebysehv Gauss-Lobatto collocation points (rj, zi),

rj = cos

((

j − 1

L − 1
− 1

)

π

)

, j = 1, ..., L. (21)

zi = cos

((

i − 1

N − 1
− 1

)

π

)

, i = 1, ..., N. (22)

Some care is necessary in the evaluation rules at the boundaries as explained in Refs. (28; 48).

At each iteration of the Newton method a linear system of the form AX = B is derived, where

X is a vector containing P = 4 × L × N unknowns and A is a full rank matrix of order P × P.

This can be solved with standard routines. The algorithm starts with an approximation to

the solution x
0,LN and the iteration procedure is applied until the stop criterion ||xs+1,LN −

x
s,LN || < 10−9 is satisfied.

The same discretization is used for the eigenvalue problem (17)-(19) with the corresponding

boundary conditions. In this way it is transformed into its discrete form by expanding the

perturbations in a truncated series of Chebyshev polynomials (20) as performed for the basic

state. The evaluation rules are detailed in Ref. (48). Therefore, the eigenvalue problem in its

discrete form is,

Cw = σBw, (23)

where w is a vector which contains Q unknowns and C and B are Q × Q matrices, with Q =
5 × L × N.

QZ or Arnoldi algorithms are used to solve the eigenvalue problem (42). σ are the eigenvalues

and w are coefficients in the Chebyshev basis of the corresponding eigenfunctions.

The discrete eigenvalue problem (23) has a finite number of eigenvalues σi. The stability

condition must now be imposed upon σmax where σmax = max(Re(σi)), bearing in mind
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that if σmax < 0 the stationary state is stable while if σmax > 0 the stationary state becomes

unstable. The control or bifurcation parameter is the Rayleigh number R. For fixed values of

the parameters, in those cases Γ, Pr, δ, β or η, the critical values are the minimum value of Rc

for which there exists a value of k, kc, such that σ(Rc, kc) = 0.

In order to test convergence of the method we include, as an example, the calculation of the

critical value of the bifurcation parameter, Rc, and the critical wave number, kc, for different

order expansions in the Chebyshev approximation in the contained fluid case. And we

benchmark the method and code to ensure the correctness of the results. Table 1 shows these

results for the contained fluid case. When the orders L and N are increased, the critical values

tend to a determined value, convergence is very good and for L = 24 and N = 14 the results

are sufficiently accurate, in fact they are exact to the thousandth. The values L = 24 and

N = 14 can be considered in the computations. In a convergence test comparing the critical

Rc obtained at different order expansions, the relative difference between the expansions at

26 × 18 and 24 × 16 is found to be less than 10−4. There are three significant digits in this

calculation. The benchmarking of the method can be done with results in Ref. (48). The

critical wave number for Γ = 2.936, η = 0.0862 and δ = 0 is kc = 0, so for these values of the

parameters the results reported in Ref. (48) are recovered. For this value of the aspect ratio

the bifurcation corresponds to a mode 2 in the x direction and the bifurcation takes place at

the same value Rc = 73.5.

N = 12 N = 14 N = 16 N = 18

L = 14 (2.5, 1203.91) (2.5, 1210.00) (2.5, 1212.73) (2.5, 1208.70)

L = 16 (2.5, 1220.00) (2.5, 1214.00) (2.5, 1214.92) (2.5, 1214.94)

L = 18 (2.5, 1220.10) (2.5, 1225.00) (2.5, 1224.92) (2.5, 1224.07)

L = 20 (2.5, 1220.10) (2.5, 1224.15) (2.5, 1224.90) (2.5, 1224.90)

L = 22 (2.5, 1220.20) (2.5, 1224.92) (2.5, 1224.92) (2.5, 1224.92)

L = 24 (2.5, 1220.20) (2.5, 1225.00) (2.5, 1225.00) (2.5, 1224.92)

L = 26 (2.5, 1220.20) (2.5, 1225.00) (2.5, 1224.92) (2.5, 1224.92)

Table 1. (kc, Rc) for different order expansions in L and N in the Chebyshev expansion (20)
for a 3D fluid with constant viscosity, η = 0, aspect ratio Γ = 2.936 and δ = 0.1.

4. Numerical solutions with geophysical interest

4.1 Contained fluid

In references of small cells the case of large viscosity (or Prandlt number) could be considered

as an approximation to mantle convection. The largest value of Prandlt number considered

in the experiments is Pr = 60 in Ref. (52), in this case boundary layer waves are observed.

Numerical results with infinite Pr number are reported in (45). In this case only stationary

patterns of rolls perpendicular to the temperature gradient are observed. Also it is of interest

the case of variable viscosity dependent on temperature, this case is plenty of references,

but all of them consider homogeneous heating without horizontal temperature gradients

(35; 36; 47). The only reference in which those gradients are taken into account in a variable

viscosity case is (19). Some numerical solutions obtained in the case considered in Ref. (19) are

presented in figure 2 at infinite Pr number, aspect ratio Γ = 2.936, η = 0.0862, R = 72.650 and
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Fig. 2. Basic state for Γ = 2.936, η = 0.0862, δ = 0.1 and R = 72.65. On the left velocity field
u. On the right Isotherms of temperature Θ.

δ = 0.1. Figure 2 shows that the structure of the velocity field is more localized close to the

zone where the temperature is higher, i.e, at r = −1. The presence of the horizontal gradient

generates convective basic states, that were conductive without the horizontal gradients. In

Ref. (19) it is shown the fluid motion is produced in the region where viscosity is lower.

Regarding the instabilities, in the case of large Γ the influence of the horizontal temperature

gradient is considerable, the problem is nearly two-dimensional (2D) in the uniform heating

case, but it is three-dimensional (3D) with the horizontal temperature gradient. Figure 3 shows

the growing mode or eigenfunction in the case Γ = 2.936, δ = 0 and η = 0.0862, the critical

wave number in this case is kc = 0, so a 2D structure appears after the bifurcation. Figure

4 shows the growing mode or eigenfunction in the same case as before, but with horizontal

gradient δ = 0.1, the critical wave number in this case is kc = 1.7, so a 3D structure appears

after the bifurcation. Also we can observe from figures 3 and 4 that the bifurcating pattern is

more structured in the r− z plane for δ = 0 and becomes more structured in the y− z plane for

δ �= 0. Hence, a horizontal temperature gradient gives rise to thermal plumes which bifurcate

to totally 3D structures.
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Fig. 3. Growing mode or eigenfunction at the instability threshold for Γ = 2.936, δ = 0,
η = 0.0862 and Rc = 72.504. On the left velocity field u. On the right Isotherms of
temperature Θ.

4.2 Not contained fluid

This case is plenty of references of direct simulations solving numerically the partial

differential equations (31; 34). But under the instability or bifurcation perspective the case

in which the fluid can flow through the boundaries is only treated in reference (29). In that

paper we show that a vortical structure appears after a stationary bifurcation of a state without

angular velocity.
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Fig. 4. Growing mode or eigenfunction at the instability threshold for Γ = 2.936, δ = 0.1,
η = 0.0862 and Rc = 72.650. On the left velocity field u. On the right Isotherms of
temperature Θ.

A numerical solution obtained in the problem considered in Ref. (29) is presented in figure 5.

Figure 5 shows the profiles of temperature, pressure and velocity components corresponding

to the clockwise vortex for Pr = 0.7, Γ = 0.5 and δ = 10 at R = 4367. This vortex appears after

a bifurcation of a basic state with zero azimuthal velocity (see Ref. (29)). The main feature of

the new steady flow emerging from the convective instability with kc = 0 and ũφ �= 0 is a

non-zero azimuthal velocity component. The fluid inside the annulus begins to move in the

azimuthal direction, rotating around the inner cylinder.

The linear stability analysis of the vortical structures shows that there is a wide range of

parameters for which this state is stable.

The track of a particle in the vortex can be obtained by integrating the evolution of the element

of fluid which follows the velocity field,

dr

dt
= ur(r, z), (24)

dφ

dt
= uφ(r, z), (25)

dz

dt
= uz(r, z). (26)

In our simulations we observe a spiral upward motion of the particle around the inner

cylinder, which implies a transport of mass in the azimuthal direction. Starting from below,

the particle goes up, moves towards the inner cylinder and rotates around it. The combination

of these movements gives the spiral trajectory shown in figure 6, where the trajectory of a

particle in the fluid is presented for Γ = 0.5, δ = 10 and R = 4367 at two different initial

conditions. Starting from a point close to the bottom plate but near the inner cylinder, where

the effect of uz is stronger than the effect of uφ, the particle goes up very fast without much

turning around the inner cylinder. This can be appreciated in figure 6 a) where the starting

point considered is (r = 0.085, z = 0.05, φ = 0) in [0.06, 0.56] × [0, 1] × [0, 2π]. When the

particle reaches the upper part of the structure it describes wider circles around the inner

cylinder as ur becomes positive and uz is very small at those levels (see figure 5). Figure

6 b) shows the effect of localizing the starting point further from the inner cylinder, e.g. at

(r = 0.31, z = 0.05, φ = 0). In this case, the effect of uφ is stronger and the spiral up motion of

the particle starts as soon as the particle begins to move.
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Fig. 5. Clockwise vortex at Γ = 0.5, δ = 10 and R = 4367. a) Isotherms of Θ; b) meridional
velocity (ur, uz); c) contour plot of the pressure p ; d) contour plot of the radial velocity
component ur; e) contour plot of the vertical velocity component uz; f) contour plot of the
azimuthal velocity component uφ. The contours correspond to equally spaced values within

their ranges of [-9:1] for Θ, [-0.02:20.4] ·103 for p, [-9.3:4.3] for ur, [-0.6:14.5] for uz and
[-26.1:0] for uφ. The pressure p is determined up to a constant.

t = 0
t = 0

a) b)

Fig. 6. Track of a particle in the fluid for the stable clockwise vortex. The values of the
parameters are Γ = 0.5, δ = 10 and R = 4367. a) Starting point at (r = 0.085, z = 0.05, φ = 0);
b) starting point at (r = 0.31, z = 0.05, φ = 0).
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5. Discusion

5.1 Contained fluid

Regarding the numerical solutions found in this case, the horizontal temperature gradient

generates convective states and tends to concentrate motion near the warmer wall. This fact

coincides with experiments in Refs. (38; 40; 41) and is consistent with previous numerical

results reported in (27; 45). The temperature dependent viscosity localizes motion near the

region of lower viscosity, i.e., the bottom plate. This also coincides with experiments in

Refs. (36; 46; 49) and numerical results in Ref. (48). It is remarkable that the horizontal

temperature gradient favours a threedimensional structure after the bifurcation, while the

pattern continues being axisymmetric after the bifurcation in the only vertical gradient case.

5.2 Not contained fluid

As detailed in Ref. (48) we found qualitative similarities between the vortical structures

computed numerically and some meteorological phenomena such as dust devils and cyclones.

One of the main characteristics of dust devils is a low-pressure region in the center of the

dust devil which coincides with the dust devil’s warm core (33). This is also observed in

our numerical vortices (see figure 5 c). Regarding temperature, in dust devils, the maximum

temperature deviation from the environment temperature (i.e. the temperature furthest from

the dust devil center) occurs at the lowest levels. This feature is observed in the temperature

profile of our vortices.

The experimental measures provided in Ref. (33) show that there is radial inflow at the lower

levels of the dust devil and radial outflow in the upper levels. It is also shown that the vertical

velocity reaches highest values and then falls off rapidly as the radius is increased. These

features are appreciated in the profile of ur and uz shown in figures 5 d) and e).

The trajectory of particles around the inner cylinder described in this section appears to be

very similar to the trajectory of particles of air (or dust) in a dust devil, characterized by a

spiral up motion (33).

Other more complex meteorological phenomena such as cyclones also present these structural

characteristics. It is known that the center (eye) of a cyclone is the area of lowest atmospheric

pressure in the region, which corresponds to a warm core in some kind of cyclones (e.g.

tropical and mesoscale) (31; 34). This coincides with that observed in figures 5 a) and 5 b).

Regarding the motion in cyclones, it is observed the inward flow next to the surface, strong

upward motion in the eyewall and outflow in a layer near the top of the storm (31; 34).

This characteristic is described in the combined effect of the radial and vertical velocity

components observed in our vortices as pointed out above (see figures figures 5 c, d) and e)).

In cyclones, a counter-clockwise motion (clockwise in the southern hemisphere) is observed

around the center of the storm, stronger just above the surface in a ring around the center and

sligther as we go up from the surface (31; 34). That coincides with the effect of the azimuthal

velocity component observed in the vortices we have computed numerically responsible for

the movement of the particles around the inner cylinder.

6. Conclusions

In this work we have reviewed the influence of horizontal temperature gradients on

convective instabilities, focusing on results with geophysical interest.
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We have distinguished two cases, a first one where the fluid is simply contained in a domain,

and a second one where the fluid can flow throughout the boundaries.

In the first case three subcases can be grouped. The case corresponding to small cells and

small Pr number displays stationary and oscillatory instabilities depending on the multiple

parameters present in the problem: properties of the fluid, surface tension effects, heat

exchange with the atmosphere, aspect ratio, dependence of viscosity with temperature, etc.

This problem has been treated from experimental, theoretical and numerical points of view.

The cases corresponding to small cells and large or infinite Pr number are closer to mantle

convection. Boundary layer waves are observed in experiments and 3D stationary patterns

of rolls perpendicular to the temperature gradient appear numerically. Finally for the case of

infinite Pr number with temperature dependent viscosity, the closest to mantle convection, 3D

stationary patterns concentrated in the region of lower viscosity and waves for larger values

of the R number appear. Summarizing, horizontal temperature gradients favour the presence

of waves and the totally three dimensional patterns.

The problem where the fluid can flow throughout the boundaries has been treated usually

as direct numerical simulations. For the first time it has been studied under the perspective

of instabilities or bifurcations in Ref. (29). In this reference vortical solutions, very similar

to those found for some atmospheric phenomena such as dust devils or hurricanes, appear

after a stationary bifurcation. This is a powerfull and simple explanation of those atmospheric

phenomena as an instability.
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