30,356 research outputs found

    The cosmological origin of the Tully-Fisher relation

    Get PDF
    We use high-resolution cosmological simulations that include the effects of gasdynamics and star formation to investigate the origin of the Tully-Fisher relation in the standard Cold Dark Matter cosmogony. Luminosities are computed for each model galaxy using their full star formation histories and the latest spectrophotometric models. We find that at z=0 the stellar mass of model galaxies is proportional to the total baryonic mass within the virial radius of their surrounding halos. Circular velocity then correlates tightly with the total luminosity of the galaxy, reflecting the equivalence between mass and circular velocity of systems identified in a cosmological context. The slope of the relation steepens slightly from the red to the blue bandpasses, and is in fairly good agreement with observations. Its scatter is small, decreasing from \~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular cosmological model we explore here seems unable to account for the zero-point of the correlation. Model galaxies are too faint at z=0 (by about two magnitudes) if the circular velocity at the edge of the luminous galaxy is used as an estimator of the rotation speed. The Tully-Fisher relation is brighter in the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent observations of z~1 galaxies. We conclude that the slope and tightness of the Tully-Fisher relation can be naturally explained in hierarchical models but that its normalization and evolution depend strongly on the star formation algorithm chosen and on the cosmological parameters that determine the universal baryon fraction and the time of assembly of galaxies of different mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters

    Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes

    Get PDF
    We use cosmological N-body/gasdynamical simulations that include star formation and feedback to examine the proposal that scaling laws between the total luminosity, rotation speed, and angular momentum of disk galaxies reflect analogous correlations between the structural parameters of their surrounding dark matter halos. The numerical experiments follow the formation of galaxy-sized halos in two Cold Dark Matter dominated universes: the standard Omega=1 CDM scenario and the currently popular LCDM model. We find that the slope and scatter of the I-band Tully-Fisher relation are well reproduced in the simulations, although not, as proposed in recent work, as a result of the cosmological equivalence between halo mass and circular velocity: large systematic variations in the fraction of baryons that collapse to form galaxies and in the ratio between halo and disk circular velocities are observed in our numerical experiments. The Tully-Fisher slope and scatter are recovered in this model as a direct result of the dynamical response of the halo to the assembly of the luminous component of the galaxy. We conclude that models that neglect the self-gravity of the disk and its influence on the detailed structure of the halo cannot be used to derive meaningful estimates of the scatter or slope of the Tully-Fisher relation. Our models fail, however, to match the zero-point of the Tully-Fisher relation, as well as that of the relation linking disk rotation speed and angular momentum. These failures can be traced, respectively, to the excessive central concentration of dark halos formed in the Cold Dark Matter cosmogonies we explore and to the formation of galaxy disks as the final outcome of a sequence of merger events. (abridged)Comment: submitted to The Astrophysical Journa

    Footballs, Conical Singularities and the Liouville Equation

    Full text link
    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints.Comment: 15 pages, Refs. added, minor changes. Typo in eq. 4.3 corrected. Version to be published in PR

    The Effects of a Photoionizing UV Background on the Formation of Disk Galaxies

    Full text link
    We use high resolution N-body/gasdynamical simulations to investigate the effects of a photoionizing UV background on the assembly of disk galaxies in hierarchically clustering universes. We focus on the mass and rotational properties of gas that can cool to form centrifugally supported disks in dark matter halos of different mass. Photoheating can significantly reduce the amount of gas that can cool in galactic halos. Depending on the strength of the UV background field, the amount of cooled gas can be reduced by up to 50%50\% in systems with circular speeds in the range 8080-200200 \kms. The magnitude of the effect, however, is not enough to solve the ``overcooling'' problem that plagues hierarchical models of galaxy formation if the UV background is chosen to be consistent with estimates based on recent observations of QSO absorption systems. Photoionization has little effect on the collapse of gas at high redshift and affects preferentially gas that is accreted at late times. Since disks form inside-out, accreting higher angular momentum gas at later times, disks formed in the presence of a UV background have spins that are even smaller than those formed in simulations that do not include the effects of photoionization. This exacerbates the angular momentum problem that afflicts hierarchical models of disk formation. We conclude that photoionization cannot provide the heating mechanism required to reconcile hierarchically clustering models with observations. Energy feedback and enrichment processes from the formation and evolution of stars must therefore be indispensable ingredients for any successful model of the formation of disk galaxies.Comment: 36 pages, w/ embedded figures, submitted to ApJ. Also available at http://penedes.as.arizona.edu/~jfn/preprints/dskform.ps.g

    Simulations of galaxy formation in a Λ cold dark matter universe : I : dynamical and photometric properties of a simulated disk galaxy.

    Get PDF
    We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition

    The Angular Momentum Distribution of Gas and Dark Matter in Galactic Halos

    Full text link
    (Abridged) We report results of a series of non radiative N-body/SPH simulations in a LCDM cosmology. We find that the spin of the baryonic component is on average larger than that of the dark matter (DM) component and we find this effect to be more pronounced at lower redshifts. A significant fraction f of gas has negative angular momentum and this fraction is found to increase with redshift. We describe a toy model in which the tangential velocities of particles are smeared by Gaussian random motions. This model is successful in explaining some of the angular momentum properties. We compare and contrast various techniques to determine the angular momentum distributions (AMDs). We show that broadening of velocity dispersions is unsuitable for making comparisons between gas and DM. We smooth the angular momentum of the particles over a fixed number of neighbors. We find that an analytical function based on gamma distribution can be used to describe a wide variety of profiles, with just one parameter \alpha. The distribution of the shape parameter α\alpha for both gas and DM follows roughly a log-normal distribution. The mean and standard deviation of log(\alpha) for gas is -0.04 and 0.11 respectively. About 90-95% of halos have \alpha<1.3, while exponential disks in NFW halos would require 1.3<\alpha<1.6. This implies that a typical halo in simulations has an excess of low angular momentum material as compared to that of observed exponential disks, a result which is consistent with the findings of earlier works. \alpha for gas is correlated with that of DM but they have a significant scatter =1.09 \pm 0.2. \alpha_Gas is also biased towards slightly higher values compared to \alpha_DM.Comment: 19 pages, 32 figures (replaced to correct a typo in the authors field in the above line, paper unchanged

    Tidal Torques and the Orientation of Nearby Disk Galaxies

    Full text link
    We use numerical simulations to investigate the orientation of the angular momentum axis of disk galaxies relative to their surrounding large scale structure. We find that this is closely related to the spatial configuration at turnaround of the material destined to form the galaxy, which is often part of a coherent two-dimensional slab criss-crossed by filaments. The rotation axis is found to align very well with the intermediate principal axis of the inertia momentum tensor at this time. This orientation is approximately preserved during the ensuing collapse, so that the rotation axis of the resulting disk ends up lying on the plane traced by the protogalactic material at turnaround. This suggests a tendency for disks to align themselves so that their rotation axis is perpendicular to the minor axis of the structure defined by surrounding matter. One example of this trend is provided by our own Galaxy, where the Galactic plane is almost at right angles with the supergalactic plane (SGP) drawn by nearby galaxies; indeed, the SGP latitude of the North Galactic Pole is just 6 degrees. We have searched for a similar signature in catalogs of nearby disk galaxies, and find a significant excess of edge-on spirals (for which the orientation of the disk rotation axis may be determined unambiguously) highly inclined relative to the SGP. This result supports the view that disk galaxies acquire their angular momentum as a consequence of early tidal torques acting during the expansion phase of the protogalactic material.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    Star Formation and Feedback in Dwarf Galaxies

    Full text link
    We examine the star formation history and stellar feedback effects of dwarf galaxies under the influence of extragalactic ultraviolet radiation. We consider the dynamical evolution of gas in dwarf galaxies using a one-dimensional, spherically symmetric, Lagrangian numerical scheme to compute the effects of radiative transfer and photoionization. We include a physically-motivated star formation recipe and consider the effects of feedback. Our results indicate that star formation in the severe environment of dwarf galaxies is a difficult and inefficient process. For intermediate mass systems, such as the dSphs around the Galaxy, star formation can proceed with in early cosmic epochs despite the intense background UV flux. Triggering processes such as merger events, collisions, and tidal disturbance can lead to density enhancements, reducing the recombination timescale, allowing gas to cool and star formation to proceed. However, the star formation and gas retention efficiency may vary widely in galaxies with similar dark matter potentials, because they depend on many factors, such as the baryonic fraction, external perturbation, IMF, and background UV intensity. We suggest that the presence of very old stars in these dwarf galaxies indicates that their initial baryonic to dark matter content was comparable to the cosmic value. This constraint suggests that the initial density fluctuation of baryonic matter may be correlated with that of the dark matter. For the more massive dwarf elliptical galaxies, the star formation efficiency and gas retention rate is much higher. Their mass to light ratio is regulated by star formation feedback, and is expected to be nearly independent of their absolute luminosity. The results of our theoretical models reproduce the observed M/L−MvM/L-M_v correlation.Comment: 35 pages, 13 figure
    • 

    corecore