3 research outputs found

    Push-pull thiophene chromophores for electro-optic applications: from 1D linear to beta-branched structures

    Get PDF
    We report the synthesis and characterization of a novel series of push-pull chromophores bearing 1D linear and beta-branched thiophenes as pi-conjugated spacers between a 2, 2, 4, 7-tetramethyl-1, 2, 3, 4-tetrahydroquinoline electron donor unit and dicyano- and tricyanovinylene electron acceptor groups. The effect of the introduction of beta-thiophenes on the linear and nonlinear (NLO) optical properties as well as electrochemical and thermal data is studied in detail by performing a comparative study between the branched and 1D linear systems. In addition, a parallel DFT computational study is used to evaluate structure-property relationships. The non-linear optical behavior of the molecules both in solution and in solid state as electro-optic (EO) films using a guest-host approach shows very promising performance for electro-optic applications with high molecular first hyperpolarizabilities (mu beta) of 4840 x 10(-48) esu and electro-optic coefficients r(33) reaching 650 pm V-1. One highlight is that the electro-optic films of the beta-branched chromophores are superior in terms of thermal stability in device operation as measured by a transmissive modified reflective Teng-Man method. This work provides guidelines for the design of improved electro-optic materials including beta-branched chromophores which could be useful for practical EO applications, where both enhanced beta and r(33) values together with chemical and thermal stability are necessary

    Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    Get PDF
    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examinedL-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm-1), L-aspartic acid (938 cm-1), L-cysteine (679 cm-1),L-glutamine (1090 cm−1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made

    Surface-initiated self-healing of polymers in aqueous media

    No full text
    Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications(1-6). Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polymer networks(7-10), biological self-healing in wet conditions, as occurs in self-assembled holdfast proteins in mussels and other marine organisms(11,12), is generally thought to involve more than reversible metal chelates. Here we demonstrate self-mending in metal-free water of synthetic polyacrylate and polymethacrylate materials that are surface-functionalized with mussel-inspired catechols. Wet self-mending of scission in these polymers is initiated and accelerated by hydrogen bonding between interfacial catechol moieties, and consolidated by the recruitment of other non-covalent interactions contributed by subsurface moieties. The repaired and pristine samples show similar mechanical properties, suggesting that the triggering of complete self-healing is enabled underwater by the formation of extensive catechol-mediated interfacial hydrogen bonds.close303
    corecore