227 research outputs found

    Macrophage MerTK promotes profibrogenic cross-talk with hepatic stellate cells via soluble mediators

    Get PDF
    Background & Aims: Activation of Kupffer cells and recruitment of monocytes are key events in fibrogenesis. These cells release soluble mediators which induce the activation of hepatic stellate cells (HSCs), the main fibrogenic cell type within the liver. Mer tyrosine kinase (MerTK) signaling regulates multiple processes in macrophages and has been implicated in the pathogenesis of non-alcoholic steatohepatitis-related fibrosis. In this study, we explored if MerTK activation in macrophages influences the profibrogenic phenotype of HSCs. Methods: Macrophages were derived from THP-1 cells or differentiated from peripheral blood monocytes towards MerTK+/CD206+/CD163+/CD209- macrophages. The role of MerTK was assessed by pharmacologic and genetic inhibition. HSC migration was determined in Boyden chambers, viability was measured by the MTT assay, and proliferation was evaluated by the BrdU incorporation assay. Results: Gas-6 induced MerTK phosphorylation and Akt activation in macrophages, and these effects were inhibited by UNC569. During polarization, MerTK+/CD206+/CD163+/CD209- macrophages exhibited activation of STAT3, ERK1/2, p38 and increased expression of VEGF-A. Activation of MerTK in THP-1 macrophages induced a secretome which promoted a significant increase in migration, proliferation, viability and expression of profibrogenic factors in HSCs. Similarly, conditioned medium from MerTK+ macrophages induced a significant increase in cell migration, proliferation, STAT3 and p38 phosphorylation and upregulation of IL-8 expression in HSCs. Moreover, conditioned medium from Gas-6-stimulated Kupffer cells induced a significant increase in HSC proliferation. These effects were specifically related to MerTK expression and activity in macrophages, as indicated by pharmacologic inhibition and knockdown experiments. Conclusions: MerTK activation in macrophages modifies the secretome to promote profibrogenic features in HSCs, implicating this receptor in the pathogenesis of hepatic fibrosis. Lay summary: Fibrosis represents the process of scarring occurring in patients with chronic liver diseases. This process depends on production of scar tissue components by a specific cell type, named hepatic stellate cells, and is regulated by interaction with other cells. Herein, we show that activation of MerTK, a receptor present in a population of macrophages, causes the production of factors that act on hepatic stellate cells, increasing their ability to produce scar tissue

    The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems

    Get PDF
    The effective applications of land surface models (LSMs) and hydrologic models pose a varied set of data input and processing needs, ranging from ensuring consistency checks to more derived data processing and analytics. This article describes the development of the Land surface Data Toolkit (LDT), which is an integrated framework designed specifically for processing input data to execute LSMs and hydrological models. LDT not only serves as a preprocessor to the NASA Land Information System (LIS), which is an integrated framework designed for multi-model LSM simulations and data assimilation (DA) integrations, but also as a land-surface-based observation and DA input processor. It offers a variety of user options and inputs to processing datasets for use within LIS and stand-alone models. The LDT design facilitates the use of common data formats and conventions. LDT is also capable of processing LSM initial conditions and meteorological boundary conditions and ensuring data quality for inputs to LSMs and DA routines. The machine learning layer in LDT facilitates the use of modern data science algorithms for developing data-driven predictive models. Through the use of an object-oriented framework design, LDT provides extensible features for the continued development of support for different types of observational datasets and data analytics algorithms to aid land surface modeling and data assimilation.</p

    Anti-emetic drugs in oncology: pharmacology and individualization by pharmacogenetics

    Get PDF
    Objective Nausea and vomiting are the most distressful side effects of cytotoxic drugs in cancer patients. Antiemetics are commonly used to reduce these side effects. However, the current antiemetic efficacy is about 70–80% in patients treated with highly-emetogenic cytotoxic drugs. One of the potential factors explaining this suboptimal response is variability in genes encoding enzymes and proteins which play a role in metabolism, transport and receptors related to antiemetic drugs. Aim of this review was to describe the pharmacology and pharmacogenetic concepts of of antiemetics in oncology. Method Pharmacogenetic and pharmacology studies of antiemetics in oncology published between January 1997 and February 2010 were searched in PubMed. Furthermore, related textbooks were also used for exploring the pharmacology of antiemetic drugs. The antiemetic drugs which were searched were the 5-hydroxytryptamine 3 receptor antagonists (5-HT3RAs), dopamine antagonists, corticosteroids, benzodiazepines, cannabinoids, antihistamines and neurokinin-1 antagonists. Result The 5-HT3RAs are widely used in highly emetogenic chemotherapy in combination with dexamethasone and a neurokinin-1 antagonist, especially in acute phase. However, the dopamine antagonists and benzodiazepines were found more appropriate for use in breakthrough and anticipatory symptoms or in preventing the delayed phase of chemotherapy induced nausea and vomiting. The use of cannabinoids and antihistamines need further investigation. Only six articles on pharmacogenetics of the 5-HT3RAs in highly emetogenic chemotherapy are published. Specifically, these studies investigated the association of the efficacy of 5-HT3RAs and variants in the multi drug resistance 1 (MDR1) gene, 5-HT3A,B and C receptor genes and CYP2D6 gene. The pharmacogenetic studies of the other antiemetics were not found in this review. Conclusion It is concluded that pharmacogenetic studies with antiemetics are sparse. It is too early to implement results of pharmacogenetic association studies of antiemetic drugs in clinical practice: confirmation of early findings is required

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Differences in Efficacy and Safety of Pharmaceutical Treatments between Men and Women: An Umbrella Review

    Get PDF
    Being male or female is an important determinant of risks for certain diseases, patterns of illness and life expectancy. Although differences in risks for and prognoses of several diseases have been well documented, sex-based differences in responses to pharmaceutical treatments and accompanying risks of adverse events are less clear. The objective of this umbrella review was to determine whether clinically relevant differences in efficacy and safety of commonly prescribed medications exist between men and women. We retrieved all available systematic reviews of the Oregon Drug Effectiveness Review Project published before January 2010. Two persons independently reviewed each report to identify relevant studies. We dually abstracted data from the original publications into standardized forms. We synthesized the available evidence for each drug class and rated its quality applying the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Findings, based on 59 studies and data of more than 250,000 patients suggested that for the majority of drugs no substantial differences in efficacy and safety exist between men and women. Some clinically important exceptions, however, were apparent: women experienced substantially lower response rates with newer antiemetics than men (45% vs. 58%; relative risk 1.49, 95% confidence interval 1.35–1.64); men had higher rates of sexual dysfunction than women while on paroxetine for major depressive disorder; women discontinued lovastatin more frequently than men because of adverse events. Overall, for the majority of drugs sex does not appear to be a factor that has to be taken into consideration when choosing a drug treatment. The available body of evidence, however, was limited in quality and quantity, confining the range and certainty of our conclusions
    • …
    corecore