24 research outputs found

    Continuous sugar upgrading using Lewis acid catalysts

    Get PDF
    Sugar upgrading to commodity chemicals has become prevalent over the last decades, owing in part to the potential of Lewis acid catalysts, in particular Sn-Beta zeolites. Sn-Beta has shown to possess high activity for the conversion of glucose to fructose as well as smaller molecules such as α-hydroxy esters (methyl lactate and methyl vinyl glycolate) and trioses (dihydroxyacetone, glyceraldehyde, pyruvaldehyde). Despite its promising kinetic potential, drawbacks that hinder it from being an industrially-used catalyst include the relatively low amount of Sn capable of being incorporated and the requirement of fluoride media to successfully synthesise Sn-Beta. Thus, top-down methods such as solid-state incorporation (SSI) has been of great interest for hard-to-incorporate heteroatoms such as Sn at higher wt. %. With this in mind, this thesis begins with an in-depth mechanistic study in the SSI of Sn-Beta, observing the acetate-zeolite interaction/evolution from the initial mechanochemical step to the ramp rate, both in inert gas flow and air using in situ spectroscopic techniques (Chapter 3). Furthermore, an optimised protocol for the heat treatment is obtained, having no negative impact in the kinetic performance of the zeolite. Chapter 4 investigates the influence of using different initial precursor (B, Fe, Ga, Al) for the zeolites’ subsequent SSI. Tests were done with glucose isomerisation as well as retro-aldol fragmentation in continuous flow. Following this, Chapter 5 demonstrates the application of a different type of Lewis acid catalyst: metal-organic frameworks (MOFs). The MOFs i.e., UiO-66(Zr) were studied in different polar solvents under continuous flow to understand their stability and were subsequently tested for disaccharide (lactose) isomerisation, a substrate which would typically not be possible to upgrade using conventional zeolites. Lactose isomerisation was done using binary mixtures of alcohol/water to successfully carry out the reaction. Chapter 6 sets out to carry out the SSI protocol, conventionally done in hydroxide-assisted zeolites, in fluoride-assisted zeolites. Tests were conducted firstly in a commercial, hydroxide-assisted zeolite using an alkaline media along with a pore directing agent at various temperatures. Thereafter, SSI protocol was conducted for three fluoride zeolites (Hf-, Sn-, Zr-) using the same conditions. Lastly, Chapter 7 discusses the results acquired as well as any pertaining challenges which might have been left open due to aforementioned results

    Modeling the interaction between tubuloglomerular feedback and myogenic mechanisms in the control of glomerular mechanics

    Get PDF
    Introduction: Mechanical stresses and strains exerted on the glomerular cells have emerged as potentially influential factors in the progression of glomerular disease. Renal autoregulation, the feedback process by which the afferent arteriole changes in diameter in response to changes in blood pressure, is assumed to control glomerular mechanical stresses exerted on the glomerular capillaries. However, it is unclear how the two major mechanisms of renal autoregulation, the afferent arteriole myogenic mechanism and tubuloglomerular feedback (TGF), each contribute to the maintenance of glomerular mechanical homeostasis.Methods: In this study, we made a mathematical model of renal autoregulation and combined this model with an anatomically accurate model of glomerular blood flow and filtration, developed previously by us. We parameterized the renal autoregulation model based on data from previous literature, and we found evidence for an increased myogenic mechanism sensitivity when TGF is operant, as has been reported previously. We examined the mechanical effects of each autoregulatory mechanism (the myogenic, TGF and modified myogenic) by simulating blood flow through the glomerular capillary network with and without each mechanism operant.Results: Our model results indicate that the myogenic mechanism plays a central role in maintaining glomerular mechanical homeostasis, by providing the most protection to the glomerular capillaries. However, at higher perfusion pressures, the modulation of the myogenic mechanism sensitivity by TGF is crucial for the maintenance of glomerular mechanical homeostasis. Overall, a loss of renal autoregulation increases mechanical strain by up to twofold in the capillaries branching off the afferent arteriole. This further corroborates our previous simulation studies, that have identified glomerular capillaries nearest to the afferent arteriole as the most prone to mechanical injury in cases of disturbed glomerular hemodynamics.Discussion: Renal autoregulation is a complex process by which multiple feedback mechanisms interact to control blood flow and filtration in the glomerulus. Importantly, our study indicates that another function of renal autoregulation is control of the mechanical stresses on the glomerular cells, which indicates that loss or inhibition of renal autoregulation may have a mechanical effect that may contribute to glomerular injury in diseases such as hypertension or diabetes. This study highlights the utility of mathematical models in integrating data from previous experimental studies, estimating variables that are difficult to measure experimentally (i.e. mechanical stresses in microvascular networks) and testing hypotheses that are historically difficult or impossible to measure

    Influence of composition and preparation method on the continuous performance of Sn-Beta for glucose-fructose isomerisation

    Get PDF
    The stability, activity and selectivity of various Sn-Beta catalysts are investigated to identify how the composition of the catalyst, in addition to its method of preparation, impact its ability to continuously isomerise glucose to fructose. Increasing the Sn loading in post-synthetically prepared catalysts leads to a decrease of both activity and stability. Accordingly, materials containing dilute amounts of Sn appear to be most suitable for continuous operation. Furthermore, the method of preparation has a profound impact on the overall performance of the catalyst. In fact, preparation of Sn-Beta by hydrothermal synthesis results in improvements of both activity and stability, with respect to the post-synthetic preparation of an otherwise-analogous material. The improved resistance of hydrothermal Sn-Beta is attributed, through a combination of operando UV–Vis, TPD-MS and vapour adsorption isotherms, to its greater resistance to deactivation by methanol (the reaction solvent). Complementary 119Sn CPMG MAS NMR experiments also indicate the presence of different Sn sites in the hydrothermal material, which, alongside the presence of a less adsorptive siliceous matrix, may be intrinsically less prone to solvent interaction than those present in post-synthetic Sn-Beta

    Solvent‐activated hafnium‐containing zeolites enable selective and continuous glucose–fructose isomerisation

    Get PDF
    The isomerisation of glucose to fructose is a critical step towards manufacturing petroleum‐free chemicals from lignocellulosic biomass. Herein we show that Hf‐containing zeolites are unique catalysts for this reaction, enabling true thermodynamic equilibrium to be achieved in a single step during intensified continuous operation, which no chemical or biological catalyst has yet been able to achieve. Unprecedented single‐pass yields of 58 % are observed at a fructose selectivity of 94 %, and continuous operation for over 100 hours is demonstrated. The unexpected performance of the catalyst is realised following a period of activation within the reactor, during which time interaction with the solvent generates a state of activity that is absent in the synthesised catalyst. Mechanistic studies by X‐ray absorption spectroscopy, chemisorption FTIR, operando UV/Vis and 1H–13C HSQC NMR spectroscopy indicate that activity arises from isolated HfIV atoms with monofunctional acidic properties

    Multiscale Shear Properties and Flow Performance of Milled Woody Biomass

    Get PDF
    One dominant challenge facing the development of biorefineries is achieving consistent system throughput with highly variant biomass feedstock quality and handling performance. Current handling unit operations are adapted from other sectors (primarily agriculture), where some simplifying assumptions about granular mechanics and flow performance do not translate well to a highly compressible and anisotropic material with nonlinear time- and stress-dependent properties. This work explores the shear and frictional properties of loblolly pine at multiple experimental test apparatus and particle scales to elucidate a property window that defines the shear behavior over a range of material attributes (particle size, size distribution, moisture content, etc.). In general, it was observed that the bulk internal friction and apparent cohesion depend strongly on both the stress state of the sample in granular shear testers and the overall particle size and distribution span. For equipment designed to characterize the quasi-static shear stress failure of bulk materials ranging from 50 to 1,000 ml in test volume, similar test results were observed for finely milled particles (50% passing size of 1.4 mm) with a narrow size distribution (span between 10 and 90% passing size of 0.9 mm), while stress chaining and over-torque issues persisted for the bench-scale test apparatus for larger particle sizes or widely dispersed sample sizes. Measurement of the anisotropic particle–particle friction ranged from coefficients of approximately 0.20 to 0.45 and resulted in significantly higher and more variable friction measurements for larger particle sizes and in perpendicular alignment orientations. To supplement these laboratory-scale properties, this work explores the flow of loblolly pine and Douglas fir through a pilot-scale wedge-shaped hopper and a screw feeder. For the gravity-driven hopper flow, the critical arching distance and mass discharge rate ranged from approximately 10 to 30 mm and 2 to 16 tons/hour, respectively, for both materials, where the arching distance depends strongly on the overall particle size and depends less on the hopper inclination angle. Comparatively, the auger feeder was found to be much more impacted by the size of the particles, where smaller particles had a more consistent and stable flow while consuming less power

    Tracking the solid-state incorporation of Sn into the framework of dealuminated zeolite beta, and consequences for catalyst design

    Get PDF
    Sn-Beta has emerged as a state-of-the-art catalyst for a range of sustainable chemical transformations. Conventionally prepared by bottom-up hydrothermal synthesis methods, recent research has demonstrated the efficiency of several top-down methods of preparation. One attractive top-down approach is Solid-State Incorporation, where a dealuminated Beta zeolite is physically mixed with a solid Sn precursor, in particular Sn(II) acetate, prior to heat treatment at 550 °C. This procedure is fast and benign, and metal incorporation requires no solvents and hence produces no aqueous Sn-containing waste streams. Although the performances of these catalysts have been well explored in recent years, the mechanism of heteroatom incorporation remains unknown, and hence, opportunities to improve the synthetic procedure via a molecular approach remain. Herein, we use a range of in situ spectroscopic techniques, alongside kinetic and computational methods, to elucidate the mechanisms that occur during preparation of the catalyst, and then improve the efficacy of the synthetic protocol. Specifically, we find that successful incorporation of Sn into the lattice occurs in several distinct steps, including (i) preliminary coordination of the metal ion to the vacant lattice sites of the zeolite during physical grinding; (ii) partial incorporation of the metal ion into the zeolite framework upon selective decomposition of the acetate ligands, which occurs upon heating the physical mixture in an inert gas flow from room temperature to 550 °C; and (iii) full isomorphous substitution of Sn into the lattice alongside its simultaneous oxidation to Lewis acidic Sn(IV), when the physically mixed material is exposed to air during a short (<1 h) isotherm period. Long isotherm steps are shown to be unnecessary, and fully oxidised Sn(IV) precursors are shown to be unsuitable for successful incorporation into the lattice. We also find that the formation of extra-framework Sn oxides is primarily dependent on the quantity of Sn present in the initial physical mixture. Based on these findings, we demonstrate a faster synthetic protocol for the preparation of Sn-Beta materials via Solid-State Incorporation, and benchmark their catalytic performance for the Meerwein-Ponndorf-Verley transfer hydrogenation reaction and the isomerisation of glucose to fructose

    Catalytic Performances of Sn-Beta Catalysts Prepared from Different Heteroatom-Containing Beta Zeolites for the Retro-Aldol Fragmentation of Glucose

    No full text
    Beta zeolites with different heteroatoms incorporated into the lattice at two loadings (Si/M = 100 or 200, where M = Al, Fe, Ga, B) were hydrothermally synthesised and used as starting materials for the preparation of Sn-Beta using Solid-State Incorporation. 119Sn CPMG MAS NMR showed that various Sn species were formed, the distribution of which depended on the identity of the initial heteroatom and the original Si/M ratio. The final Sn-Beta materials (with Si/Sn = 200) were explored as catalysts for the retro-aldol fragmentation of glucose to &alpha;-hydroxy-esters in the continuous regime. Amongst these materials, B-derived Sn-Beta was found to exhibit improved levels of selectivity and stability, particularly compared to Sn-Beta catalysts synthesised from commercially available Al-Beta materials, achieving a combined yield of methyl lactate and methyl vinyl glycolate &gt; 80% at short times on the stream. Given that B atoms can be removed from the Beta lattice in mild conditions without the use of highly concentrated acidic media, this discovery demonstrates that B-Beta is an attractive starting material for the future post-synthetic preparation of Lewis acidic zeolites

    Catalytic Performances of Sn-Beta Catalysts Prepared from Different Heteroatom-Containing Beta Zeolites for the Retro-Aldol Fragmentation of Glucose

    No full text
    Beta zeolites with different heteroatoms incorporated into the lattice at two loadings (Si/M = 100 or 200, where M = Al, Fe, Ga, B) were hydrothermally synthesised and used as starting materials for the preparation of Sn-Beta using Solid-State Incorporation. 119Sn CPMG MAS NMR showed that various Sn species were formed, the distribution of which depended on the identity of the initial heteroatom and the original Si/M ratio. The final Sn-Beta materials (with Si/Sn = 200) were explored as catalysts for the retro-aldol fragmentation of glucose to α-hydroxy-esters in the continuous regime. Amongst these materials, B-derived Sn-Beta was found to exhibit improved levels of selectivity and stability, particularly compared to Sn-Beta catalysts synthesised from commercially available Al-Beta materials, achieving a combined yield of methyl lactate and methyl vinyl glycolate > 80% at short times on the stream. Given that B atoms can be removed from the Beta lattice in mild conditions without the use of highly concentrated acidic media, this discovery demonstrates that B-Beta is an attractive starting material for the future post-synthetic preparation of Lewis acidic zeolites
    corecore