6 research outputs found

    Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep.

    Get PDF
    THE AIM OF THIS STUDY WAS TO INVESTIGATE THE GENETIC DIVERSITY WITHIN AND AMONG THREE BREEDS OF SHEEP: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip(®). Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds

    Genome-Wide Association Study of Parasite Resistance to Gastrointestinal Nematodes in Corriedale Sheep

    No full text
    Selection of genetically resistant animals is one alternative to reduce the negative impact of gastrointestinal nematodes (GIN) on sheep production. The aim of this study was to identify genomic regions associated with GIN resistance in Corriedale sheep by single-step genome-wide association studies (ssGWAS) using 170, 507 and 50K single nucleotide polymorphisms (SNPs). Analysis included 19,547 lambs with faecal egg counts (FEC) records, a pedigree file of 40,056 animals and 454, 711 and 383 genotypes from 170, 507 and 50K SNPs, respectively. Genomic estimated breeding values (GEBV) were obtained with single-step genomic BLUP methodology (ssGBLUP), using a univariate animal model, which included contemporary group, type of birth and age of dam as class fixed effects and age at FEC recording as covariate. The SNP effects as wells as p-values were estimated with POSTGSF90 program. Significance level was defined by a chromosome-wise False Discovery Rate of 5%. Significant genomic regions were identified in chromosomes 1, 3, 12 and 19 with the 170 SNP set, in chromosomes 7, 12 and 24 using the 507 SNP chip and only in chromosome 7 with the 50K SNP chip. Candidate genes located in these regions, using Oar_v4.0 as reference genome, were TIMP3, TLR5, LEPR and TLR9 (170 SNPs), SYNDIG1L and MGRN1 (507 SNP chip) and INO80, TLN2, TSHR and EIF2AK4 (50K SNP chip). These results validate genomic regions associated with FEC previously identified in Corriedale and other breeds and report new candidate regions for further investigation

    Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep

    No full text
    The aim of this study was to investigate the genetic diversity within and among three breeds of sheep: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip®. Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (F ST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (F ST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (F ST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds
    corecore