31 research outputs found

    Apolipoprotein A-I Attenuates Palmitate-Mediated NF-κB Activation by Reducing Toll-Like Receptor-4 Recruitment into Lipid Rafts

    Get PDF
    While high-density lipoprotein (HDL) is known to protect against a wide range of inflammatory stimuli, its anti-inflammatory mechanisms are not well understood. Furthermore, HDL's protective effects against saturated dietary fats have not been previously described. In this study, we used endothelial cells to demonstrate that while palmitic acid activates NF-κB signaling, apolipoprotein A–I, (apoA-I), the major protein component of HDL, attenuates palmitate-induced NF-κB activation. Further, vascular NF-κB signaling (IL-6, MCP-1, TNF-α) and macrophage markers (CD68, CD11c) induced by 24 weeks of a diabetogenic diet containing cholesterol (DDC) is reduced in human apoA-I overexpressing transgenic C57BL/6 mice compared to age-matched WT controls. Moreover, WT mice on DDC compared to a chow diet display increased gene expression of lipid raft markers such as Caveolin-1 and Flotillin-1, and inflammatory Toll-like receptors (TLRs) (TLR2, TLR4) in the vasculature. However apoA-I transgenic mice on DDC show markedly reduced expression of these genes. Finally, we show that in endothelial cells TLR4 is recruited into lipid rafts in response to palmitate, and that apoA-I prevents palmitate-induced TLR4 trafficking into lipid rafts, thereby blocking NF-κB activation. Thus, apoA-I overexpression might be a useful therapeutic tool against vascular inflammation

    Identification and Characterization of Nucleolin as a COUP-TFII Coactivator of Retinoic Acid Receptor β Transcription in Breast Cancer Cells

    Get PDF
    The orphan nuclear receptor COUP-TFII plays an undefined role in breast cancer. Previously we reported lower COUP-TFII expression in tamoxifen/endocrine-resistant versus sensitive breast cancer cell lines. The identification of COUP-TFII-interacting proteins will help to elucidate its mechanism of action as a transcriptional regulator in breast cancer.FLAG-affinity purification and multidimensional protein identification technology (MudPIT) identified nucleolin among the proteins interacting with COUP-TFII in MCF-7 tamoxifen-sensitive breast cancer cells. Interaction of COUP-TFII and nucleolin was confirmed by coimmunoprecipitation of endogenous proteins in MCF-7 and T47D breast cancer cells. In vitro studies revealed that COUP-TFII interacts with the C-terminal arginine-glycine repeat (RGG) domain of nucleolin. Functional interaction between COUP-TFII and nucleolin was indicated by studies showing that siRNA knockdown of nucleolin and an oligonucleotide aptamer that targets nucleolin, AS1411, inhibited endogenous COUP-TFII-stimulated RARB2 expression in MCF-7 and T47D cells. Chromatin immunoprecipitation revealed COUP-TFII occupancy of the RARB2 promoter was increased by all-trans retinoic acid (atRA). RARβ2 regulated gene RRIG1 was increased by atRA and COUP-TFII transfection and inhibited by siCOUP-TFII. Immunohistochemical staining of breast tumor microarrays showed nuclear COUP-TFII and nucleolin staining was correlated in invasive ductal carcinomas. COUP-TFII staining correlated with ERα, SRC-1, AIB1, Pea3, MMP2, and phospho-Src and was reduced with increased tumor grade.Our data indicate that nucleolin plays a coregulatory role in transcriptional regulation of the tumor suppressor RARB2 by COUP-TFII

    PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    Get PDF
    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis

    Shoulder adhesive capsulitis and hypercholesterolemia: role of APO A1 lipoprotein polymorphism on etiology and severity

    No full text
    Purpose: Relationship between shoulder adhesive capsulitis (AC) and hypercholesterolemia is known. The connecting link might be represented by the correlation between HDL and transforming growth factor beta (TGF-β): normally, HDLs stimulate TGF-β expression; the latter is employed in the development of fibrous tissue. We assess whether the presence of the Apo-A1-G75A-polymorphism, which is correlated to an enhanced HDL function, could be a risk factor for the genesis and severity of AC. Methods: Peripheral blood samples of 27 patients [7M; 20F, mean age 54.81 (41–65)] with AC and hypercholesterolemia were submitted to polymerase chain reaction in order to evaluate the Apo-A1-G75A-polymorphism. Genome database was used as control. Two categories were obtained according to AC severity: type I (active forward flexion ≥ 100°) and type II ( 0.05), respectively. Patients with type I and II capsulitis were 11 [flexion 148.0° (range 100°–165°)] and 16 [flexion 82.5° (range 50°–95°)], respectively. The prevalence of Apo-A1-G75A in type I was 18.1% (2AG; 9GG) and in type II was 56.3% (8GA; 1AA; 7GG), respectively (RR 1.87, IC 1.005–3.482, p < 0.05). Conclusions: Apo-A1-G75A-polymorphism is not necessary for the genesis, but it is a risk factor for severity of AC. Level of Evidence: III

    Genetic analysis of Paraoxonase (PON1) locus reveals an increased frequency of Arg192 allele in centenarians

    No full text
    Human Paraoxonase (PON1) is a High-Density Lipoprotein (HDL)-associated esterase that hydrolyses lipo-peroxides. PON1 has recently attracted attention as a protective factor against oxidative modification of LDL and may therefore play an important role in the prevention of the atherosclerotic process. Two polymorphisms have been extensively studied: a Leucine (L allele) to Methionine (M allele) substitution at codon 55, and a Glutamine (A allele) to Arginine (B allele) substitution at codon 192. We have examined these two aminoacidic changes in 579 people aged 20 to 65 years old, and 308 centenarians. We found that the percentage of carriers of the B allele at codon 192 (B+ individuals) is higher in centenarians than in controls (0.539 vs 0.447), moreover we found that among the B+ individuals, the phenomenon was due to an increase of people carrying M alleles at codon 55 locus. In conclusion, we propose that genetic variability at PON1 locus affects survival at extreme advanced age
    corecore