59 research outputs found

    Glassy behavior of molecular crystals: A comparison between results from MD-simulation and mode coupling theory

    Full text link
    We have investigated the glassy behavior of a molecular crystal built up with chloroadamantane molecules. For a simple model of this molecule and a rigid fcc lattice a MD simulation was performed from which we obtained the dynamical orientational correlators Sλλâ€Č(q,t)S_{\lambda \lambda '}({\bf{q}},t) and the ``self'' correlators Sλλâ€Č(s)(t)S_{\lambda \lambda '}^{(s)}(t), with λ=(ℓ,m)\lambda = (\ell, m), λâ€Č=(ℓâ€Č,mâ€Č)\lambda' = (\ell', m'). Our investigations are for the diagonal correlators λ=λâ€Č\lambda = \lambda'. Since the lattice constant decreases with decreasing temperature which leads to an increase of the steric hindrance of the molecules, we find a strong slowing down of the relaxation. It has a high sensitivity on λ\lambda, λâ€Č\lambda '. For most (ℓ,m)(\ell,m), there is a two-step relaxation process, but practically not for (ℓ,m)=(2,1)(\ell,m) = (2,1), (3,2)(3,2), (4,1)(4,1) and (4,3)(4,3). Our results are consistent with the α\alpha-relaxation scaling laws predicted by mode coupling theory from which we deduce the glass transition temperature TcMD≅217KT_c^{MD} \cong 217K. From a first principle solution of the mode coupling equations we find TcMCT≅267KT_c^{MCT} \cong 267K. Furthermore mode coupling theory reproduces the absence of a two-step relaxation process for (ℓ,m)=(2,1)(\ell,m)=(2,1), (3,2)(3,2), (4,1)(4,1) and (4,3)(4,3), but underestimates the critical nonergodicity parameters by about 50 per cent for all other (ℓ,m)(\ell,m). It is suggested that this underestimation originates from the anisotropic crystal field which is not accounted for by mode coupling theory. Our results also imply that phonons have no essential influence on the long time relaxation

    The Debye-Waller factor of liquid silica: Theory and simulation

    Full text link
    We show that the prediction of mode-coupling theory for a model of a network-forming strong glass-former correctly describes the wave-vector dependence of the Debye-Waller factor. To obtain a good description it is important to take into account the triplet correlation function c_3, which we evaluate from a computer simulation. Our results support the possibility that this theory is able to accurately describe the non-ergodicity parameters of simple as well as of network-forming liquids.Comment: 5 pages of Latex, 3 figure

    Inherent Structures, Configurational Entropy and Slow Glassy Dynamics

    Full text link
    We give a short introduction to the inherent structure approach, with particular emphasis on the Stillinger and Weber decomposition, of glassy systems. We present some of the results obtained in the framework of spin-glass models and Lennard-Jones glasses. We discuss how to generalize the standard Stillinger and Weber approach by including the entropy of inherent structures. Finally we discuss why this approach is probably insufficient to describe the behavior of some kinetically constrained models.Comment: 16 pages, 8 figures, Contribution to the ESF SPHINX meeting `Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25, 2001

    Static and Dynamic Anomalies in a Repulsive Spherical Ramp Liquid: Theory and Simulation

    Full text link
    We compare theoretical and simulation results for static and dynamic properties for a model of particles interacting via a spherically symmetric repulsive ramp potential. The model displays anomalies similar to those found in liquid water, namely, expansion upon cooling and an increase of diffusivity upon compression. In particular, we calculate the phase diagram from the simulation and successfully compare it with the phase diagram obtained using the Rogers-Young (RY) closure for the Ornstein-Zernike equation. Both the theoretical and the numerical calculations confirm the presence of a line of isobaric density maxima, and lines of compressibility minima and maxima. Indirect evidence of a liquid-liquid critical point is found. Dynamic properties also show anomalies. Along constant temperature paths, as the density increases, the dynamics alternates several times between slowing down and speeding up, and we associate this behavior with the progressive structuring and de-structuring of the liquid. Finally we confirm that mode coupling theory successfully predicts the non-monotonic behavior of dynamics and the presence of multiple glass phases, providing strong evidence that structure (the only input of mode coupling theory) controls dynamics.Comment: Static and Dynamic Anomalies in a Repulsive Spherical Ramp Liquid: Theory and Simulatio

    How does the relaxation of a supercooled liquid depend on its microscopic dynamics?

    Full text link
    Using molecular dynamics computer simulations we investigate how the relaxation dynamics of a simple supercooled liquid with Newtonian dynamics differs from the one with a stochastic dynamics. We find that, apart from the early beta-relaxation regime, the two dynamics give rise to the same relaxation behavior. The increase of the relaxation times of the system upon cooling, the details of the alpha-relaxation, as well as the wave vector dependence of the Edwards-Anderson-parameters are independent of the microscopic dynamics.Comment: 6 pages of Latex, 4 figure

    A quantitative test of the mode-coupling theory of the ideal glass transition for a binary Lennard-Jones system

    Full text link
    Using a molecular dynamics computer simulation we determine the temperature dependence of the partial structure factors for a binary Lennard-Jones system. These structure factors are used as input data to solve numerically the wave-vector dependent mode-coupling equations in the long time limit. Using the so determined solutions, we compare the predictions of mode-coupling theory (MCT) with the results of a previously done molecular dynamics computer simulation [Phys. Rev. E 51, 4626 (1995), ibid. 52, 4134 (1995)]. From this comparison we conclude that MCT gives a fair estimate of the critical coupling constant, a good estimate of the exponent parameter, predicts the wave-vector dependence of the various nonergodicity parameters very well, except for very large wave-vectors, and gives also a very good description of the space dependence of the various critical amplitudes. In an attempt to correct for some of the remaining discrepancies between the theory and the results of the simulation, we investigate two small (ad hoc) modifications of the theory. We find that one modification gives a worse agreement between theory and simulation, whereas the second one leads to an improved agreement.Comment: Figures available from W. Ko

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory

    Fast relaxation in a fragile liquid under pressure

    Full text link
    The incoherent dynamic structure factor of ortho-terphenyl has been measured by neutron time-of-flight and backscattering technique in the pressure range from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K. Tagged-particle correlations in the compressed liquid decay in two steps. The alpha-relaxation lineshape is independent of pressure, and the relaxation time proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of beta relaxation. The beta-relaxation regime can be described by the mode-coupling scaling function; amplitudes and time scales allow a consistent determination of the critical pressure P_c(T). alpha and beta relaxation depend in the same way on the thermodynamic state; close to the mode-coupling cross-over, this dependence can be parametrised by an effective coupling Gamma ~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters

    A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid

    Full text link
    Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming system. The molecule is described in the interaction-site representation and the equations are solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for the molecule's arrested position in the glass state and the reorientational correlators for angular-momentum index ℓ=1\ell = 1 and ℓ=2\ell = 2 near the glass transition are compared with those obtained previously within a theory based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for the α\alpha-process can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is demonstrated that the glassy dynamics is independent of the molecule's inertia parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin

    Dynamical heterogeneities close to a colloidal gel

    Full text link
    Dynamical heterogeneities in a colloidal fluid close to gelation are studied by means of computer simulations. A clear distinction between some fast particles and the rest, slow ones, is observed, yielding a picture of the gel composed by two populations with different mobilities. Analyzing the statics and dynamics of both sets of particles, it is shown that the slow particles form a network of stuck particles, whereas the fast ones are able to move over long distances. Correlation functions show that the environment of the fast particles relaxes much faster than that of the slow ones, but at short times the bonds between fast particles are longer lived due to the flexibility of their structure. No string-like motion is observed for the fast particles, but they occupy preferential sites in the surface of the structure formed by the slow ones
    • 

    corecore