7 research outputs found

    Sexual selection on wing interference patterns in Drosophila melanogaster

    Get PDF
    Animals with color vision use color information in intra- and interspecific communication, which in turn may drive the evolution of conspicuous colored body traits via natural and sexual selection. A recent study found that the transparent wings of small flies and wasps in lower-reflectance light environments display vivid and stable structural color patterns, called “wing interference patterns” (WIPs). Such WIPs were hypothesized to function in sexual selection among small insects with wing displays, but this has not been experimentally verified. Here, to our knowledge we present the first experimental evidence that WIPs in males of Drosophila melanogaster are targets of mate choice from females, and that two different color traits—saturation and hue—experience directional and stabilizing sexual selection, respectively. Using isogenic lines from the D. melanogaster Genetic Reference Panel, we compare attractiveness of different male WIPs against black and white visual backgrounds. We show that males with more vivid wings are more attractive to females than are males with dull wings. Wings with a large magenta area (i.e., intermediate trait values) were also preferred over those with a large blue or yellow area. These experimental results add a visual element to the Drosophila mating array, integrating sexual selection with elements of genetics and evo-devo, potentially applicable to a wide array of small insects with hyaline wings. Our results further underscore that the mode of sexual selection on such visual signals can differ profoundly between different color components, in this case hue and saturation

    Comparative anatomy of embryogenesis in three species of Podostemaceae and evolution of the loss of embryonic shoot and root meristems

    Get PDF
    During embryogenesis in angiosperms, the embryonic shoot and root meristems are created at opposite poles of the embryo, establishing a vertical body plan. However, the aquatic eudicot family Podostemaceae exhibits an unusual horizontal body plan, which is attributed to the loss of embryonic shoot and root meristems. To infer the embryogenetic changes responsible for the loss of these meristems, we examined the embryogenesis of three podostemads with different meristem characters, that is, Terniopsis brevis with distinct shoot and root meristems, Zeylanidium lichenoides with reduced shoot and no root meristems, and Hydrobryum japonicum with no shoot and no root meristems. In T. brevis, as in other eudicots, the putative organizing center (OC) and L1 layer (= the epidermal cell layer) arose to generate a distinct shoot meristem initial, and the hypophysis formed the putative quiescent center (QC) of a root meristem. Z. lichenoides had a morphologically unrecognizable shoot meristem, because a distinct L1 layer did not develop, whereas the putative OC precursor arose normally. In H. japonicum, the vertical divisions of the apical cells of eight-cell embryo prevented putative OC initiation. In Z. lichenoides and H. japonicum, the putative QC failed to initiate because the hypophysis repeated longitudinal divisions during early embryogenesis. Based on their phylogenetic relationships, we infer that the conventional embryonic shoot meristem was lost in Podostemaceae via two steps, that is, the loss of a distinct L1 layer and the loss of the OC, whereas the loss of the embryonic root meristem occurred once by misspecification of the hypophysis. © 2011 Wiley Periodicals, Inc

    Expression of SHOOT MERISTEMLESS

    No full text
    corecore