82 research outputs found

    Analysis of multidrug resistance in the predominant Streptococcus pneumoniae serotypes in Canada:the SAVE study, 2011-15

    Get PDF
    Objectives: This study assessed MDR invasive isolates of Streptococcus pneumoniae, in relation to serotype evolution in Canada between 2011 and 2015 as part of the annual SAVE study. Methods: As part of a collaboration between the Canadian Antimicrobial Resistance Alliance and Public Health Agency of Canada-National Microbiology Laboratory, 6207 invasive isolates of S. pneumoniae were evaluated. All isolates were serotyped and had antimicrobial susceptibility testing performed, in accordance with CLSI guidelines (M07-A10, 2015). Complete susceptibility profiles were available for 6001 isolates. MDR was defined as resistance to three or more classes of antimicrobial agents (with penicillin MIC ≥2 mg/L defined as resistant). Results: The overall rate of MDR S. pneumoniae was 6.2% (372/6001) in SAVE, decreasing significantly from 8.5% in 2011 to 5.6% in 2015 (P = 0.0041). MDR was observed in 32 serotypes, with serotypes 15A and 19A predominating (26.6% and 41.7% of the MDR isolates, respectively). The overall proportion of serotypes 19A, 7F and 33A decreased significantly (P 5%) for 24F and 33F. Conclusions: In 2015, 56.3% of invasive MDR S. pneumoniae were serotypes included in the PCV-13 vaccine. PCV-13 includes the most commonly identified serotype, 19A; however, other increasingly important MDR serotypes, such as 15A, 24F and 33F, are notably not in the currently used vaccines

    Challenges to immunization: the experiences of homeless youth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homelessness is a critical social issue, both a product of, and contributing to, poor mental and physical health. Over 150,000 young Canadians live on the streets. Homeless youth experience a high incidence of infectious diseases, many of which are vaccine preventable. Early departure from school and limited access to public health services makes them a particularly vulnerable high-risk group. This study explores challenges to obtaining essential vaccines experienced by homeless youth.</p> <p>Methods</p> <p>A qualitative research study to explore knowledge, attitudes, beliefs, and experiences surrounding immunization of hard-to-reach homeless youth was designed. Participants were recruited for focus groups from Phoenix House and Shelter, a non-profit, community-based organization assisting homeless youth in Halifax, Nova Scotia, Canada. An experienced facilitator guided the recorded discussions. Transcripts of audiotapes were analyzed using a constant comparative method until data revealed a set of exemplars and themes that best captured participants’ knowledge, attitudes, beliefs and experiences surrounding immunization and infectious diseases.</p> <p>Results</p> <p>Important themes emerged from our analysis. Considerable variability in knowledge about immunization and vaccine preventable diseases was found. The homeless youth in the study had limited awareness of meningitis in contrast to a greater knowledge about sexually transmitted infections and influenza, gained during the H1N1/09 public health campaign. They recognized their poverty as a risk for contracting infectious diseases, along with their inability to always employ known strategies to prevent infectious diseases, due to circumstances. They showed considerable insight into the detrimental effects of poor hygiene, sleeping locations and risk behaviour. Interviewed homeless youth regarded themselves as good compliers of health professional advice and offered valuable suggestions to improve immunization in their population.</p> <p>Conclusions</p> <p>To provide effective public health interventions, it is necessary to consider the knowledge, attitudes, beliefs, and experiences of hard to reach, high risk groups. Our study shows that homeless youth are interested and capable in discussing immunization. Active targeting of homeless youth for public health immunization programs is needed. Working collaboratively with non-profit organizations that assist homeless youth provides an opportunity to increase their knowledge of infectious risks and to improve immunization strategies in this vulnerable group.</p

    Canadian oncogenic human papillomavirus cervical infection prevalence: Systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncogenic human papillomavirus (HPV) infection prevalence is required to determine optimal vaccination strategies. We systematically reviewed the prevalence of oncogenic cervical HPV infection among Canadian females prior to immunization.</p> <p>Methods</p> <p>We included studies reporting DNA-confirmed oncogenic HPV prevalence estimates among Canadian females identified through searching electronic databases (e.g., MEDLINE) and public health websites. Two independent reviewers screened literature results, abstracted data and appraised study quality. Prevalence estimates were meta-analyzed among routine screening populations, HPV-positive, and by cytology/histology results.</p> <p>Results</p> <p>Thirty studies plus 21 companion reports were included after screening 837 citations and 120 full-text articles. Many of the studies did not address non-response bias (74%) or use a representative sampling strategy (53%).</p> <p>Age-specific prevalence was highest among females aged < 20 years and slowly declined with increasing age. Across all populations, the highest prevalence estimates from the meta-analyses were observed for HPV types 16 (routine screening populations, 8 studies: 8.6% [95% confidence interval 6.5-10.7%]; HPV-infected, 9 studies: 43.5% [28.7-58.2%]; confirmed cervical cancer, 3 studies: 48.8% [34.0-63.6%]) and 18 (routine screening populations, 8 studies: 3.3% [1.5-5.1%]; HPV-infected, 9 studies: 13.6% [6.1-21.1%], confirmed cervical cancer, 4 studies: 17.1% [6.4-27.9%].</p> <p>Conclusion</p> <p>Our results support vaccinating females < 20 years of age, along with targeted vaccination of some groups (e.g., under-screened populations). The highest prevalence occurred among HPV types 16 and 18, contributing a combined cervical cancer prevalence of 65.9%. Further cancer protection is expected from cross-protection of non-vaccine HPV types. Poor study quality and heterogeneity suggests that high-quality studies are needed.</p
    corecore