2,312 research outputs found
Ultra-Strong Optomechanics Incorporating the Dynamical Casimir Effect
We propose a superconducting circuit comprising a dc-SQUID with mechanically
compliant arm embedded in a coplanar microwave cavity that realizes an
optomechanical system with a degenerate or non-degenerate parametric
interaction generated via the dynamical Casimir effect. For experimentally
feasible parameters, this setup is capable of reaching the single-photon,
ultra-strong coupling regime, while simultaneously possessing a parametric
coupling strength approaching the renormalized cavity frequency. This opens up
the possibility of observing the interplay between these two fundamental
nonlinearities at the single-photon level.Comment: 7 pages, 1 figure, 1 tabl
Iterative solutions to the steady state density matrix for optomechanical systems
We present a sparse matrix permutation from graph theory that gives stable
incomplete Lower-Upper (LU) preconditioners necessary for iterative solutions
to the steady state density matrix for quantum optomechanical systems. This
reordering is efficient, adding little overhead to the computation, and results
in a marked reduction in both memory and runtime requirements compared to other
solution methods, with performance gains increasing with system size. Either of
these benchmarks can be tuned via the preconditioner accuracy and solution
tolerance. This reordering optimizes the condition number of the approximate
inverse, and is the only method found to be stable at large Hilbert space
dimensions. This allows for steady state solutions to otherwise intractable
quantum optomechanical systems.Comment: 10 pages, 5 figure
Quantum analysis of a nonlinear microwave cavity-embedded dc SQUID displacement detector
We carry out a quantum analysis of a dc SQUID mechanical displacement
detector, comprising a SQUID with mechanically compliant loop segment, which is
embedded in a microwave transmission line resonator. The SQUID is approximated
as a nonlinear, current dependent inductance, inducing an external flux
tunable, nonlinear Duffing self-interaction term in the microwave resonator
mode equation. Motion of the compliant SQUID loop segment is transduced
inductively through changes in the external flux threading SQUID loop, giving a
ponderomotive, radiation pressure type coupling between the microwave and
mechanical resonator modes. Expressions are derived for the detector signal
response and noise, and it is found that a soft-spring Duffing self-interaction
enables a closer approach to the displacement detection standard quantum limit,
as well as cooling closer to the ground state
Quality improvement at scale: evaluation of the drivers and barriers to adoption and sustainability of an intervention to reduce late referral in chronic kidney disease
This quality improvement project aimed to drive large-scale and sustained change to reduce the burden of chronic kidney disease in the UK. The intervention is a software programme that extracts relevant biochemical data from laboratory databases which then generate graphs of estimated kidney function (eGFR) over time. Graphs showing progressive kidney disease are sent directly back to GPs to alert them to re-review patient care and if necessary, refer to renal services. The aim of this evaluation study was to explain the barriers and drivers to implementation and adoption of the eGFR graph intervention.
This evaluation study involved five of the 20 renal units (sites) involved. A Developmental Evaluation approach was utilised. Methods included collection of descriptive data about graph reporting; GP surveys (n=68); focus groups (n=4) with Practices; face-to-face interviews with secondary care clinicians (n=10).
Results showed the mean number of graphs reviewed per week per site was 230, taking one hour per week per site. Only 18.2 % graphs highlighted a concerning decline in kidney function. Important enablers to sustain the intervention were low cost, easy to understand, a sense of local ownership and perceived impact. Barriers included nephrologists’ perceived increase in new referrals.
We concluded that developmental evaluation can explain the barriers/drivers to implementation of a national quality improvement project that involves a variety of different stakeholders. The intervention has the potential to slow down progression of kidney disease due to the eGFR prompts alerting GPs to review the patient record and take action, such as reviewing medications and referring to renal teams if progressive kidney disease had not been identified previously
Experiences and Perceptions of Black Men Who Have Sex with Men About Acquiring HIV: A Qualitative Narrative Perspective.
In the United States, Black men who have sex with men (MSM), between the ages of 18 and 34Â years, have the highest rates of new HIV infections. The prevalence of HIV in this population is three to four times higher than their White MSM counterparts. Twelve Black MSM from the Bay Area, nine with HIV and three without HIV, were interviewed regarding their experiences and perceived risks of acquiring HIV. Narrative analysis revealed these themes: (a) tested regularly for HIV, (b) HIV knowledge varied before arriving in San Francisco, (c) condom use typically nonexistent when under the influence of alcohol and other drugs, (d) inability to negotiate sex and condom usage, and (e) sense of anticipation, resignation, and acceptance about acquiring HIV. Implications of this study highlight the need for Black MSM to have earlier HIV prevention education, including condom negotiation skills, particularly when under the influence of drugs and/or alcohol
Non-equilibrium Landauer Transport Model for Hawking radiation from a Black Hole
We propose that the Hawking radiation energy and entropy flow rates from a
black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer
transport process. Support for this viewpoint comes from previous calculations
invoking conformal symmetry in the near-horizon region, which give radiation
rates that are identical to those of a single 1D quantum channel connected to a
thermal reservoir at the Hawking temperature. The Landauer approach shows in a
direct way the particle statistics independence of the energy and entropy
fluxes of a black hole radiating into vacuum, as well as one near thermal
equilibrium with its environment. As an application of the Landauer approach,
we show that Hawking radiation gives a net entropy production that is 50%
larger than that obtained assuming standard three-dimensional emission into
vacuum.Comment: 14 pages, 2 figures, published versio
Quantum Analysis of a Nonlinear Microwave Cavity-Embedded dc SQUID Displacement Detector
We carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector, comprising a SQUID with mechanically compliant loop segment, which is embedded in a microwave transmission line resonator. The SQUID is approximated as a nonlinear current-dependent inductance, inducing an external flux tunable nonlinear Duffing self-interaction term in the microwave resonator mode equation. Motion of the compliant SQUID loop segment is transduced inductively through changes in the external flux threading SQUID loop, giving a ponderomotive radiation pressure-type coupling between the microwave and mechanical resonator modes. Expressions are derived for the detector signal response and noise, and it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state
Maximal sublattices and Frattini sublattices of bounded lattices
We investigate the number and size of the maximal sublattices of a finite lattice. For any positive integer k, there is a finite lattice L with more that ]L]k sublattices. On the other hand, there are arbitrary large finite lattices which contain a maximal sublattice with only 14 elements. It is shown that every bounded lattice is isomorphic to the Frattini sublattice (the intersection of all maximal sublattices) of a finite bounded lattic
Studying Individual Differences in Language Comprehension: The Challenges of Item-Level Variability and Well-Matched Control Conditions
Translating experimental tasks that were designed to investigate differences between conditions at the group-level into valid and reliable instruments to measure individual differences in cognitive skills is challenging (Hedge et al., 2018; Rouder et al., 2019; Rouder & Haaf, 2019). For psycholinguists, the additional complexities associated with selecting or constructing language stimuli, and the need for appropriate well-matched baseline conditions make this endeavour particularly complex. In a typical experiment, a process-of-interest (e.g. ambiguity resolution) is targeted by contrasting performance in an experimental condition with performance in a well-matched control condition. In many cases, careful between-condition matching precludes the same participant from encountering all stimulus items. Unfortunately, solutions that work for group-level research (e.g. constructing counterbalanced experiment versions) are inappropriate for individual-differences designs. As a case study, we report an ambiguity resolution experiment that illustrates the steps that researchers can take to address this issue and assess whether their measurement instrument is both valid and reliable. On the basis of our findings, we caution against the widespread approach of using datasets from group-level studies to also answer important questions about individual differences
Analogue Hawking Radiation in a dc-SQUID Array Transmission Line
We propose the use of a superconducting transmission line formed from an array of dc-SQUID’s for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with an horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as back-reaction and analogue space-time fluctuations on the Hawking process
- …