1,947 research outputs found

    Natural Regulation of Energy Flow in a Green Quantum Photocell

    Full text link
    Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we show that regulation against these fluctuations arises naturally within a two-channel quantum heat engine photocell, thus enabling the efficient conversion of varying incident solar spectrum at Earth's surface. Remarkably, absorption in the green portion of the spectrum is avoided, as it provides no inherent regulatory benefit. Our findings illuminate a quantum structural origin of regulation, provide a novel optoelectronic design strategy, and may elucidate the link between photoprotection in photosynthesis and the predominance of green plants on Earth.Comment: 17 pages, 4 figure

    Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes

    Full text link
    Ultrafast photocurrent measurements are performed on individual carbon nanotube PN junction photodiodes. The photocurrent response to sub-picosecond pulses separated by a variable time delay {\Delta}t shows strong photocurrent suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias VSD, and is twice as long for photon energy above the second subband E22 as compared to lower energy. The observed photocurrent behavior is well described by an escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure

    Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes

    Full text link
    Ultrafast photocurrent measurements are performed on individual carbon nanotube PN junction photodiodes. The photocurrent response to sub-picosecond pulses separated by a variable time delay {\Delta}t shows strong photocurrent suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias VSD, and is twice as long for photon energy above the second subband E22 as compared to lower energy. The observed photocurrent behavior is well described by an escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure

    Quieting a noisy antenna reproduces photosynthetic light harvesting spectra

    Get PDF
    Photosynthesis is remarkable, achieving near unity light harvesting quantum efficiency in spite of dynamic light conditions and noisy physiological environment. Under these adverse conditions, it remains unknown whether there exists a fundamental organizing principle that gives rise to robust photosynthetic light harvesting. Here, we present a noise-canceling network model that relates noisy physiological conditions, power conversion efficiency, and the resulting absorption spectrum of photosynthetic organisms. Taking external light conditions in three distinct niches - full solar exposure, light filtered by oxygenic phototrophs, and under sea water - we derive optimal absorption characteristics for efficient solar power conversion. We show how light harvesting antennae can be finely tuned to maximize power conversion efficiency by minimizing excitation noise, thus providing a unified theoretical basis for the experimentally observed wavelength dependence of light absorption in green plants, purple bacteria, and green sulfur bacteria

    Competing Channels for Hot-Electron Cooling in Graphene

    Get PDF
    We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p−n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T[superscript *]), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures (T < T[superscript *]), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature. This nonmonotonic temperature dependence can be understood as resulting from the competition between two hot-electron cooling pathways: (a) (intrinsic) momentum-conserving normal collisions that dominates at low temperatures and (b) (extrinsic) disorder-assisted supercollisions that dominates at high temperatures. Gate control in our high-quality samples allows us to resolve the two processes in the same device for the first time. The peak temperature T[superscript *] depends on carrier density and disorder concentration, thus allowing for an unprecedented way of controlling graphene’s photoresponse.United States. Air Force Office of Scientific Research (Grant FA9550-11-1-0225)David & Lucile Packard Foundation (Fellowship
    • …
    corecore