111 research outputs found

    A comparative technoeconomic analysis of renewable hydrogen production using solar energy

    Get PDF
    A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H_2 day^(−1) (3.65 kilotons per year) was performed to assess the economics of each technology, and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems, differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems, differentiated by the degree of grid connectivity (unconnected and grid supplemented), were analyzed. In each case, a base-case system that used established designs and materials was compared to prospective systems that might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8%, the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H_2 per year were 205MM(205 MM (293 per m^2 of solar collection area (m_S^(−2)), 14.7W(H2,P)(1))and14.7 W_(H2,P)^(−1)) and 260 MM (371mS(2),371 m_S^(−2), 18.8 W_(H2,P)^(−1)), respectively. The untaxed, plant-gate levelized costs for the hydrogen product (LCH) were 11.4kg(1)and11.4 kg^(−1) and 12.1 kg^(−1) for the base-case PEC and PV-E systems, respectively. The 10× concentrated PEC base-case system capital cost was 160MM(160 MM (428 m_S^(−2), 11.5W(H2,P)(1))andforanefficiencyof2011.5 W_(H2,P)^(−1)) and for an efficiency of 20% the LCH was 9.2 kg^(−1). Likewise, the grid supplemented base-case PV-E system capital cost was 66MM(66 MM (441 m_S^(−2), 11.5W(H2,P)(1)),andwithsolartohydrogenandgridelectrolysissystemefficienciesof9.811.5 W_(H2,P)^(−1)), and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61%, respectively, the LCH was 6.1 kg^(−1). As a benchmark, a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of 0.07kWh(1),theLCHwas0.07 kWh^(−1), the LCH was 5.5 kg^(−1). A sensitivity analysis indicated that, relative to the base-case, increases in the system efficiency could effect the greatest cost reductions for all systems, due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically, a cost of CO_2 greater than ∼800(tonCO2)(1)wasestimatedtobenecessaryforbasecasePEChydrogentoreachpriceparitywithhydrogenderivedfromsteamreformingofmethanepricedat800 (ton CO_2)^(−1) was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at 12 GJ^(−1) ($1.39 (kg H_2)^(−1)). A comparison with low CO_2 and CO_2-neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO_2-neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO_2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen, but many, as yet unmet, challenges include catalytic efficiency and selectivity, and CO_2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production, but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO_2 reduction are even greater

    Si/TiO_2 Tandem-Junction Microwire Arrays for Unassisted Solar-Driven Water Splitting

    Get PDF
    Tandem-junction microwire array photoelectrodes have been fabricated by coating np^+-Si radial homojunction microwire arrays sequentially with fluorine-doped tin oxide (FTO) and titanium dioxide (TiO_2). These photoelectrodes effected unassisted water splitting under simulated 1 Sun conditions with an open-circuit potential (E_(oc)) of −1.5 V vs the formal potential for oxygen evolution, E^(0′)(OH^−/O_2), a current density at E = E^(0′)(OH^−/O_2) of 0.78 mA cm^(−2), a fill factor ( ff ) = 0.51, and a photovoltaic-biased photoelectrochemical ideal regenerative cell efficiency of 0.6%

    Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    Get PDF
    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released

    A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly

    Get PDF
    Background: The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results: We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions: These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies

    Geophysical constraints on the reliability of solar and wind power in the United States

    Get PDF
    We analyze 36 years of global, hourly weather data (1980–2015) to quantify the covariability of solar and wind resources as a function of time and location, over multi-decadal time scales and up to continental length scales. Assuming minimal excess generation, lossless transmission, and no other generation sources, the analysis indicates that wind-heavy or solar-heavy U.S.-scale power generation portfolios could in principle provide ∼80% of recent total annual U.S. electricity demand. However, to reliably meet 100% of total annual electricity demand, seasonal cycles and unpredictable weather events require several weeks’ worth of energy storage and/or the installation of much more capacity of solar and wind power than is routinely necessary to meet peak demand. To obtain ∼80% reliability, solar-heavy wind/solar generation mixes require sufficient energy storage to overcome the daily solar cycle, whereas wind-heavy wind/solar generation mixes require continental-scale transmission to exploit the geographic diversity of wind. Policy and planning aimed at providing a reliable electricity supply must therefore rigorously consider constraints associated with the geophysical variability of the solar and wind resource—even over continental scales

    Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution

    Get PDF
    An n+p-Si microwire array coupled with a two-layer catalyst film consisting of Ni–Mo nanopowder and TiO_2 light-scattering nanoparticles has been used to simultaneously achieve high fill factors and light-limited photocurrent densities from photocathodes that produce H_2(g) directly from sunlight and water. The TiO_2 layer scattered light back into the Si microwire array, while optically obscuring the underlying Ni–Mo catalyst film. In turn, the Ni–Mo film had a mass loading sufficient to produce high catalytic activity, on a geometric area basis, for the hydrogen-evolution reaction. The best-performing microwire array devices prepared in this work exhibited short-circuit photocurrent densities of −14.3 mA cm^(−2), photovoltages of 420 mV, and a fill factor of 0.48 under 1 Sun of simulated solar illumination, whereas the equivalent planar Ni–Mo-coated Si device, without TiO_2 scatterers, exhibited negligible photocurrent due to complete light blocking by the Ni–Mo catalyst layer

    Electrical and Photoelectrochemical Properties of WO_3/Si Tandem Photoelectrodes

    Get PDF
    Tungsten trioxide (WO_3) has been investigated as a photoanode for water oxidation reactions in acidic aqueous conditions. Though WO_3 is not capable of performing unassisted solar-driven water splitting, WO_3 can in principle be coupled with a low band gap semiconductor, such as Si, to produce a stand-alone, tandem photocathode/photoanode p-Si/n-WO_3 system for solar fuels production. Junctions between Si and WO_3, with and without intervening ohmic contacts, were therefore prepared and investigated in detail. Thin films of n-WO_3 that were prepared directly on p-Si and n-Si substrates exhibited an onset of photocurrent at a potential consistent with expectations based on the band-edge alignment of these two materials predicted by Andersen theory. However, n-WO_3 films deposited on Si substrates exhibited much lower anodic photocurrent densities (0.02 mA cm^(–2) at 1.0 V vs SCE) than identically prepared n-WO_3 films that were deposited on fluorine-doped tin oxide (FTO) substrates (0.45 mA cm^(–2) at 1.0 V vs SCE). Deposition of n-WO_3 onto a thin layer of tin-doped indium oxide (ITO) that had been deposited on a Si substrate yielded anodic photocurrent densities that were comparable to those observed for n-WO_3 films that had been deposited onto FTO-coated glass. An increased photovoltage was observed when an n-Si/ITO Schottky junction was formed in series with the n-WO_3 film, relative to when the WO_3 was deposited directly onto the Si. Hence, inclusion of the ITO layer allowed for tandem photoelectrochemical devices to be prepared using n-WO_3 and n-Si as the light absorbers

    A taxonomy for solar fuels generators

    Get PDF
    A number of approaches to solar fuels generation are being developed, each of which has associated advantages and challenges. Many of these solar fuels generators are identified as “photoelectrochemical cells” even though these systems collectively operate based on a suite of fundamentally different physical principles. To facilitate appropriate comparisons between solar fuels generators, as well as to enable concise and consistent identification of the state-of-the-art for designs based on comparable operating principles, we have developed a taxonomy and nomenclature for solar fuels generators based on the source of the asymmetry that separates photogenerated electrons and holes. Three basic device types have been identified: photovoltaic cells, photoelectrochemical cells, and particulate/molecular photocatalysts. We outline the advantages and technological challenges associated with each type, and provide illustrative examples for each approach as well as for hybrid approaches

    Amorphous TiO_2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation

    Get PDF
    Although semiconductors such as silicon (Si), gallium arsenide (GaAs), and gallium phosphide (GaP) have band gaps that make them efficient photoanodes for solar fuel production, these materials are unstable in aqueous media. We show that TiO_2 coatings (4 to 143 nanometers thick) grown by atomic layer deposition prevent corrosion, have electronic defects that promote hole conduction, and are sufficiently transparent to reach the light-limited performance of protected semiconductors. In conjunction with a thin layer or islands of Ni oxide electrocatalysts, Si photoanodes exhibited continuous oxidation of 1.0 molar aqueous KOH to O_2 for more than 100 hours at photocurrent densities of >30 milliamperes per square centimeter and ~100% Faradaic efficiency. TiO_2-coated GaAs and GaP photoelectrodes exhibited photovoltages of 0.81 and 0.59 V and light-limiting photocurrent densities of 14.3 and 3.4 milliamperes per square centimeter, respectively, for water oxidation
    corecore