2,123 research outputs found

    Improving the NRTidal model for binary neutron star systems

    Full text link
    Accurate and fast gravitational waveform (GW) models are essential to extract information about the properties of compact binary systems that generate GWs. Building on previous work, we present an extension of the NRTidal model for binary neutron star (BNS) waveforms. The upgrades are: (i) a new closed-form expression for the tidal contribution to the GW phase which includes further analytical knowledge and is calibrated to more accurate numerical relativity data than previously available; (ii) a tidal correction to the GW amplitude; (iii) an extension of the spin-sector incorporating equation-of-state-dependent finite size effects at quadrupolar and octupolar order; these appear in the spin-spin tail terms and cubic-in-spin terms, both at 3.5PN. We add the new description to the precessing binary black hole waveform model IMRPhenomPv2 to obtain a frequency-domain precessing binary neutron star model. In addition, we extend the SEOBNRv4_ROM and IMRPhenomD aligned-spin binary black hole waveform models with the improved tidal phase corrections. Focusing on the new IMRPhenomPv2_NRTidalv2 approximant, we test the model by comparing with numerical relativity waveforms as well as hybrid waveforms combining tidal effective-one-body and numerical relativity data. We also check consistency against a tidal effective-one-body model across large regions of the BNS parameter space.Comment: Accepted manuscrip

    Effect of Ignoring Eccentricity in Testing General Relativity with Gravitational Waves

    Full text link
    Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parameterized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use non-spinning numerical relativity simulations from the SXS catalog with three mass ratios (1,2,3)(1,2,3), which we scale to a redshifted total mass of 80M⊙80M_\odot and luminosity distance of 400400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05\sim0.05 and ∼0.1\sim 0.1 at 1717 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90%\sim 90\% credibility at a distance of ≳1.5\gtrsim 1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR.Comment: 16 pages, 6 figures, version accepted by PR

    Inferring spin tilts at formation from gravitational wave observations of binary black holes: Interfacing precession-averaged and orbit-averaged spin evolution

    Full text link
    Two important parameters inferred from the gravitational wave signals of binaries of precessing black holes are the spin tilt angles, i.e., the angles at which the black holes' spin axes are inclined with respect to the binary's orbital angular momentum. The LIGO-Virgo parameter estimation analyses currently provide spin tilts at a fiducial reference frequency, often the lowest frequency used in the data analysis. However, the most astrophysically interesting quantities are the spin tilts when the binary was formed, which can be significantly different from those at the reference frequency for strongly precessing binaries. The spin tilts at formally infinite separation are a good approximation to the tilts at formation in many formation channels and can be computed efficiently for binary black holes using precession-averaged evolution. Here, we present a new code for computing the tilts at infinity that combines the precession-averaged evolution with orbit-averaged evolution at high frequencies and illustrate its application to GW190521 and other binary black hole detections from O3a. We have empirically determined the transition frequency between the orbit-averaged and precession-averaged evolution to produce tilts at infinity with a given accuracy. We also have regularized the precession-averaged equations in order to obtain good accuracy for the very close-to-equal-mass binary parameters encountered in practice. This additionally allows us to investigate the singular equal-mass limit of the precession-averaged expressions, where we find an approximate scaling of 1/(1−q)1/(1 - q) with the mass ratio qq.Comment: 25 pages, 16 figure

    Binary Neutron Stars with Generic Spin, Eccentricity, Mass ratio, and Compactness - Quasi-equilibrium Sequences and First Evolutions

    Get PDF
    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity reduced data; we present the possibility of computing data for significantly unequal-mass binaries; and we create equal-mass binaries with individual compactness up to 0.23. As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a q=2.06q=2.06 mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of ∼10−2M⊙\sim10^{-2}M_\odot is transferred between the two stars. This configuration also ejects a large amount of material during merger, imparting a substantial kick to the remnant. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies, but also other errors, notably truncation errors, need to be reduced in order for the improvement due to eccentricity reduction to be effective. [abridged]Comment: (37pages, 26 figures

    Linking Quantitative Motor Assessments to the Underlying Brian Injury: A Preliminary Report

    Get PDF
    Using custom software and an inexpensive novel motion capture controller, we adapted and automated traditional subjective motor assessments in an integrated system to develop a quantitative motor assessment (QMA) that is low-cost, and highly sensitive. Twelve participants who have suffered a traumatic brain injury performed the QMA and had MRI scans of their brain. We compared the individual QMA results from the TBI group to normative standards (developed in an earlier work). We also compared the QMA results to measures of damage found in MRI results. Preliminary analysis of a subset of data are reported here

    Shear modulus of the hadron-quark mixed phase

    Full text link
    Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the shear components of the elastic modulus tensor and angle average them to obtain the effective (scalar) shear modulus for the case where the mixed phase is a polycrystal. We include the contributions from changing the cell size, which are necessary for the stability of the lower-dimensional portions of the lattice. Stability also requires a minimum surface tension, generally tens of MeV/fm^2 depending on the equation of state. We find that the shear modulus can be a few times 10^33 erg/cm^3, two orders of magnitude higher than the first estimate, over a significant fraction of the maximum mass stable star for certain parameter choices.Comment: 22 pages, 12 figures, version accepted by Phys. Rev. D, with the corrections to the shear modulus computation and Table I given in the erratu

    White matter integrity and vulnerability to Alzheimer's disease: Preliminary findings and future directions

    Get PDF
    AbstractNeuroimaging biomarkers that precede cognitive decline have the potential to aid early diagnosis of Alzheimer's disease (AD). A body of diffusion tensor imaging (DTI) work has demonstrated declines in white matter (WM) microstructure in AD and its typical prodromal state, amnestic mild cognitive impairment. The present review summarizes recent evidence suggesting that WM integrity declines are present in individuals at high AD-risk, prior to cognitive decline. The available data suggest that AD-risk is associated with WM integrity declines in a subset of tracts showing decline in symptomatic AD. Specifically, AD-risk has been associated with WM integrity declines in tracts that connect gray matter structures associated with memory function. These tracts include parahippocampal WM, the cingulum, the inferior fronto-occipital fasciculus, and the splenium of the corpus callosum. Preliminary evidence suggests that some AD-risk declines are characterized by increases of radial diffusivity, raising the possibility that a myelin-related pathology may contribute to AD onset. These findings justify future research aimed at a more complete understanding of the neurobiological bases of DTI-based declines in AD. With continued refinement of imaging methods, DTI holds promise as a method to aid identification of presymptomatic AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease
    • …
    corecore