39 research outputs found

    Partitioning of Poly(amidoamine) Dendrimers between n-Octanol and Water

    Get PDF
    Dendritic nanomaterials are emerging as key building blocks for a variety of nanoscale materials and technologies. Poly(amidoamine) (PAMAM) dendrimers were the first class of dendritic nanomaterials to be commercialized. Despite numerous investigations, the environmental fate, transport, and toxicity of PAMAM dendrimers is still not well understood. As a first step toward the characterization of the environmental behavior of dendrimers in aquatic systems, we measured the octanol−water partition coefficients (logK_(ow)) of a homologous series of PAMAM dendrimers as a function of dendrimer generation (size), terminal group and core chemistry. We find that the logKow of PAMAM dendrimers depend primarily on their size and terminal group chemistry. For G1-G5 PAMAM dendrimers with terminal NH_2 groups, the negative values of their logK_(ow) indicate that they prefer to remain in the water phase. Conversely, the formation of stable emulsions at the octanol−water (O/W) interface in the presence of G6-NH_2 and G8-NH_2 PAMAM dendrimers suggest they prefer to partition at the O/W interface. In all cases, published studies of the cytotoxicity of Gx-NH_2 PAMAM dendrimers show they strongly interact with the lipid bilayers of cells. These results suggest that the logKow of a PAMAM dendrimer may not be a good predictor of its affinity with natural organic media such as the lipid bilayers of cell membranes

    Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol

    Get PDF
    Filter-based thermal desorption (F-TD) techniques, such as the filter inlet for gases and aerosols, are widely employed to investigate the molecular composition and physicochemical properties of secondary organic aerosol (SOA). Here, we introduce an enhanced capability of F-TD through the combination of a customized F-TD inlet with chemical ionization mass spectrometry (CIMS) and ultraperformance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). The utility of F-TD/CIMS + UPLC/ESI-MS is demonstrated by application to α-pinene ozonolysis SOA for which increased filter aerosol mass loading is shown to slow the evaporation rates of deposited compounds. Evidence for oligomer decomposition producing multimode F-TD/CIMS thermograms is provided by the measurement of the mass fraction remaining of monomeric and dimeric α-pinene oxidation products on the filter via UPLC/ESI-MS. In situ evaporation of aerosol particles suggests that α-pinene-derived hydroperoxides are thermally labile; thus, analysis of particle-phase (hydro)peroxides via F-TD may not be appropriate. A synthesized pinene-derived dimer ester (C₂₀H₃₂O₅) is found to be thermally stable up to 200 °C, whereas particle-phase dimers (C₁₉H₃₀O₅) are observed to form during F-TD analysis via thermally induced condensation of synthesized pinene-derived alcohols and diacids. The complementary F-TD/CIMS + UPLC/ESI-MS method offers previously inaccessible insight into the molecular composition and thermal desorption behavior of SOA that both clarifies and expands on analysis via traditional F-TD techniques

    Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol

    Get PDF
    Filter-based thermal desorption (F-TD) techniques, such as the filter inlet for gases and aerosols, are widely employed to investigate the molecular composition and physicochemical properties of secondary organic aerosol (SOA). Here, we introduce an enhanced capability of F-TD through the combination of a customized F-TD inlet with chemical ionization mass spectrometry (CIMS) and ultraperformance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). The utility of F-TD/CIMS + UPLC/ESI-MS is demonstrated by application to α-pinene ozonolysis SOA for which increased filter aerosol mass loading is shown to slow the evaporation rates of deposited compounds. Evidence for oligomer decomposition producing multimode F-TD/CIMS thermograms is provided by the measurement of the mass fraction remaining of monomeric and dimeric α-pinene oxidation products on the filter via UPLC/ESI-MS. In situ evaporation of aerosol particles suggests that α-pinene-derived hydroperoxides are thermally labile; thus, analysis of particle-phase (hydro)peroxides via F-TD may not be appropriate. A synthesized pinene-derived dimer ester (C₂₀H₃₂O₅) is found to be thermally stable up to 200 °C, whereas particle-phase dimers (C₁₉H₃₀O₅) are observed to form during F-TD analysis via thermally induced condensation of synthesized pinene-derived alcohols and diacids. The complementary F-TD/CIMS + UPLC/ESI-MS method offers previously inaccessible insight into the molecular composition and thermal desorption behavior of SOA that both clarifies and expands on analysis via traditional F-TD techniques

    The Selective Electrochemical Conversion of Preactivated CO_2 to Methane

    Get PDF
    This work reports the selective electrochemical conversion of CO_2 to methane, the reverse reaction of fossil fuel combustion. This reaction is facilitated by preactivation of the CO_2 molecule with an N-heterocyclic carbene (NHC) to form a zwitterionic species in the first step. In the presence of Ni(cyclam)^(2+) and CF_3CH_2OH, this species is shown to undergo further electrochemical reduction of the bound-CO_2 fragment at glassy carbon cathodes in dichloromethane electrolyte solution. Labeling studies confirm the origin of the carbon and protons in the methane product are the preactivated CO_2 and trifluoroethanol respectively

    Cathodic NH₄⁺ leaching of nitrogen impurities in CoMo thin-film electrodes in aqueous acidic solutions

    Get PDF
    Electrocatalytic reduction of dinitrogen (N₂) to ammonium (NH₄⁺) in acidic aqueous solutions was investigated at ambient temperature and pressure using a cobalt–molybdenum (CoMo) thin-film electrode prepared by magnetron reactive sputtering. Increased concentrations of ammonium ions (NH₄⁺) were consistently detected in the electrolyte using ion chromatography (IC) after constant-potential electrolysis at various potentials (≤−0.29 V vs. RHE). Using a newly developed analytical method based on ammonia derivatization, performing the experiments with ¹⁵N₂-labelled gas led however to the detection of increased ¹⁴NH₄⁺ concentrations instead of ¹⁵NH₄⁺. X-ray photoelectron spectroscopic (XPS) analysis of the electrode surface revealed the presence of Mo N and Mo–NH_x species. Several contamination sources were identified that led to substantial increases in the concentration of ammonium ions, including ¹⁵NH₃ impurities in ¹⁵N₂ gas. The observed ammonium concentrations can be consistently ascribed to leaching of nitrogen (¹⁴N) impurities incorporated in the CoMo film during the sputtering process. Researchers in the field are therefore urged to adopt extended protocols to identify and eliminate sources of ammonia contamination and to very carefully monitor the ammonium concentrations in each experimental step

    Cathodic NH₄⁺ leaching of nitrogen impurities in CoMo thin-film electrodes in aqueous acidic solutions

    Get PDF
    Electrocatalytic reduction of dinitrogen (N₂) to ammonium (NH₄⁺) in acidic aqueous solutions was investigated at ambient temperature and pressure using a cobalt–molybdenum (CoMo) thin-film electrode prepared by magnetron reactive sputtering. Increased concentrations of ammonium ions (NH₄⁺) were consistently detected in the electrolyte using ion chromatography (IC) after constant-potential electrolysis at various potentials (≤−0.29 V vs. RHE). Using a newly developed analytical method based on ammonia derivatization, performing the experiments with ¹⁵N₂-labelled gas led however to the detection of increased ¹⁴NH₄⁺ concentrations instead of ¹⁵NH₄⁺. X-ray photoelectron spectroscopic (XPS) analysis of the electrode surface revealed the presence of Mo N and Mo–NH_x species. Several contamination sources were identified that led to substantial increases in the concentration of ammonium ions, including ¹⁵NH₃ impurities in ¹⁵N₂ gas. The observed ammonium concentrations can be consistently ascribed to leaching of nitrogen (¹⁴N) impurities incorporated in the CoMo film during the sputtering process. Researchers in the field are therefore urged to adopt extended protocols to identify and eliminate sources of ammonia contamination and to very carefully monitor the ammonium concentrations in each experimental step

    Formation and evolution of molecular products in α-pinene secondary organic aerosol

    Get PDF
    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58–72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA

    Synergistic O_3 + OH oxidation pathway to extremely low-volatility dimers revealed in β-pinene secondary organic aerosol

    Get PDF
    Dimeric compounds contribute significantly to the formation and growth of atmospheric secondary organic aerosol (SOA) derived from monoterpene oxidation. However, the mechanisms of dimer production, in particular the relevance of gas- vs. particle-phase chemistry, remain unclear. Here, through a combination of mass spectrometric, chromatographic, and synthetic techniques, we identify a suite of dimeric compounds (C_(15–19)H_(24–32)O_(5–11)) formed from concerted O3 and OH oxidation of β-pinene (i.e., accretion of O_3- and OH-derived products/intermediates). These dimers account for an appreciable fraction (5.9–25.4%) of the β-pinene SOA mass and are designated as extremely low-volatility organic compounds. Certain dimers, characterized as covalent dimer esters, are conclusively shown to form through heterogeneous chemistry, while evidence of dimer production via gas-phase reactions is also presented. The formation of dimers through synergistic O_3 + OH oxidation represents a potentially significant, heretofore-unidentified source of low-volatility monoterpene SOA. This reactivity also suggests that the current treatment of SOA formation as a sum of products originating from the isolated oxidation of individual precursors fails to accurately reflect the complexity of oxidation pathways at play in the real atmosphere. Accounting for the role of synergistic oxidation in ambient SOA formation could help to resolve the discrepancy between the measured atmospheric burden of SOA and that predicted by regional air quality and global climate models
    corecore