71 research outputs found
Light Heavy MSSM Higgs Bosons at Large tan_beta
The region of MSSM Higgs parameter space currently excluded by the CDF
Collaboration, based on an analysis of ~1 fb^-1 of integrated luminosity, is
less than the expected sensitivity. We analyze the potential implications of
the persistence of this discrepancy within the MSSM, assuming that the soft
supersymmetry-breaking contributions to scalar masses are universal, apart from
those to the Higgs masses (the NUHM model). We find that a light heavy MSSM
Higgs signal in the unexcluded part of the sensitive region could indeed be
accommodated in this simple model, even after taking into account other
constraints from cold dark matter, electroweak precision observables and B
physics observables. In this case the NUHM suggests that supersymmetric
signatures should also be detectable in the near future in some other
measurements such as BR(B_s -> mu+ mu-), BR(b -> s gamma) and (g-2)_mu, and M_h
would have to be very close to the LEP exclusion limit. In addition, the dark
matter candidate associated with this model should be on the verge of detection
in direct detection experiments.Comment: 14 pages, 2 figure
Slepton and Neutralino/Chargino Coannihilations in MSSM
Within the low-energy effective Minimal Supersymmetric extension of Standard
Model (effMSSM) we calculated the neutralino relic density taking into account
slepton-neutralino and neutralino-chargino/neutralino coannihilation channels.
We performed comparative study of these channels and obtained that both of them
give sizable contributions to the reduction of the relic density. Due to these
coannihilation processes some models (mostly with large neutralino masses)
enter into the cosmologically interesting region for relic density, but other
models leave this region. Nevertheless, in general, the predictions for direct
and indirect dark matter detection rates are not strongly affected by these
coannihilation channels in the effMSSM.Comment: 12 pages, 9 figures, revte
Squark-, Slepton- and Neutralino-Chargino coannihilation effects in the low-energy effective MSSM
Within the low-energy effective Minimal Supersymmetric extension of the
Standard Model (effMSSM) we calculate the neutralino relic density taking into
account slepton-neutralino, squark-neutralino and neutralino/chargino-
neutralino coannihilation channels. By including squark (stop and sbottom)
coannihilation channels we extend our comparative study to all allowed
coannihilations and obtain the general result that all of them give sizable
contributions to the reduction of the neutralino relic density. Due to these
coannihilation processes some models (mostly with large neutralino masses)
enter into the cosmologically interesting region for relic density, but other
models leave this region. Nevertheless, in general, the predictions for direct
and indirect dark matter detection rates are not strongly affected by these
coannihilation channels in the effMSSM.Comment: 14 pages, 10 figures, corrected and to be published in Phys. Rev.
CP Violation in a Supersymmetric SO(10) x U(2)_{F} Model
A model based on SUSY SO(10) combined with U(2) family symmetry constructed
recently by the authors is generalized to include phases in the mass matrices
leading to CP violation. In contrast with the commonly used effective operator
approach, -dimensional Higgs fields are utilized to construct the
Yukawa sector. R-parity symmetry is thus preserved at low energies. The
symmetric mass textures arising from the left-right symmetry breaking chain of
SO(10) give rise to very good predictions for quark and lepton masses and
mixings. The prediction for agrees with the average of current
bounds from BaBar and Belle. In the neutrino sector, our predictions are in
good agreement with results from atmospheric neutrino experiments. Our model
favors both the LOW and QVO solutions to the solar neutrino anomaly; the matrix
element for neutrinoless double beta decay is highly suppressed. The leptonic
analog of the Jarlskog invariant, , is predicted to be of
.Comment: RevTeX4; 7 pages; typos corrected; clarification remarks added; more
references added. To appear in Physical Review
Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass
We observe that in SUSY models with non-universal GUT scale gaugino mass
parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified
value results in a smaller value of -m_{H_u}^2 at the weak scale. By the
electroweak symmetry breaking conditions, this implies a reduced value of \mu^2
{\it vis \`a vis} models with gaugino mass unification. The lightest neutralino
can then be mixed Higgsino dark matter with a relic density in agreement with
the measured abundance of cold dark matter (DM). We explore the phenomenology
of this high |M_2| DM model. The spectrum is characterized by a very large wino
mass and a concomitantly large splitting between left- and right- sfermion
masses. In addition, the lighter chargino and three light neutralinos are
relatively light with substantial higgsino components. The higgsino content of
the LSP implies large rates for direct detection of neutralino dark matter, and
enhanced rates for its indirect detection relative to mSUGRA. We find that
experiments at the LHC should be able to discover SUSY over the portion of
parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark
mass, while a 1 TeV electron-positron collider has a reach comparable to that
of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt
events at the LHC will likely show more than one mass edge, while its shape
should provide indirect evidence for the large higgsino content of the decaying
neutralinos.Comment: 36 pages with 26 eps figure
Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches
In gravity-mediated SUSY breaking models with non-universal gaugino masses,
lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and
gluino masses. Lower third generation squark masses, in turn, diminish the
effect of a large top quark Yukawa coupling in the running of the higgs mass
parameter m_{H_u}^2, leading to a reduction in the magnitude of the
superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter
gives rise to mixed higgsino dark matter (MHDM), which can efficiently
annihilate in the early universe to give a dark matter relic density in accord
with WMAP measurements. We explore the phenomenology of the low |M_3| scenario,
and find for the case of MHDM increased rates for direct and indirect detection
of neutralino dark matter relative to the mSUGRA model. The sparticle mass
spectrum is characterized by relatively light gluinos, frequently with
m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with
gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can
be much lighter than sbottom and first/second generation squarks. The presence
of low mass higgsino-like charginos and neutralinos is expected at the CERN
LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible
opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^-
collider, the region of MHDM will mean that the entire spectrum of charginos
and neutralinos are amongst the lightest sparticles, and are most likely to be
produced at observable rates, allowing for a complete reconstruction of the
gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure
Numerical simulations of the Warm-Hot Intergalactic Medium
In this paper we review the current predictions of numerical simulations for
the origin and observability of the warm hot intergalactic medium (WHIM), the
diffuse gas that contains up to 50 per cent of the baryons at z~0. During
structure formation, gravitational accretion shocks emerging from collapsing
regions gradually heat the intergalactic medium (IGM) to temperatures in the
range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the
ultraviolet (UV) and X-ray bands and to contribute a significant fraction of
the soft X-ray background emission. While O VI and C IV absorption systems
arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in
FUSE and HST observations, models agree that current X-ray telescopes such as
Chandra and XMM-Newton do not have enough sensitivity to detect the hotter
WHIM. However, future missions such as Constellation-X and XEUS might be able
to detect both emission lines and absorption systems from highly ionised atoms
such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 14; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Supersymmetric Benchmarks with Non-Universal Scalar Masses or Gravitino Dark Matter
We propose and examine a new set of benchmark supersymmetric scenarios, some
of which have non-universal Higgs scalar masses (NUHM) and others have
gravitino dark matter (GDM). The scalar masses in these models are either
considerably larger or smaller than the narrow range allowed for the same
gaugino mass m_{1/2} in the constrained MSSM (CMSSM) with universal scalar
masses m_0 and neutralino dark matter. The NUHM and GDM models with larger m_0
may have large branching ratios for Higgs and/or production in the cascade
decays of heavier sparticles, whose detection we discuss. The phenomenology of
the GDM models depends on the nature of the next-to-lightest supersymmetric
particle (NLSP), which has a lifetime exceeding 10^4 seconds in the proposed
benchmark scenarios. In one GDM scenario the NLSP is the lightest neutralino
\chi, and the supersymmetric collider signatures are similar to those in
previous CMSSM benchmarks, but with a distinctive spectrum. In the other GDM
scenarios based on minimal supergravity (mSUGRA), the NLSP is the lighter stau
slepton {\tilde \tau}_1, with a lifetime between ~ 10^4 and 3 X 10^6 seconds.
Every supersymmetric cascade would end in a {\tilde \tau}_1, which would have a
distinctive time-of-flight signature. Slow-moving {\tilde \tau}_1's might be
trapped in a collider detector or outside it, and the preferred detection
strategy would depend on the {\tilde \tau}_1 lifetime. We discuss the extent to
which these mSUGRA GDM scenarios could be distinguished from gauge-mediated
models.Comment: 52 pages LaTeX, 13 figure
Colliders and Cosmology
Dark matter in variations of constrained minimal supersymmetric standard
models will be discussed. Particular attention will be given to the comparison
between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
- …