17 research outputs found

    Relative Configuration of Micrograms of Natural Compounds Using Proton Residual Chemical Shift Anisotropy

    Get PDF
    [Abstract] 3D molecular structure determination is a challenge for organic compounds or natural products available in minute amounts. Proton/proton and proton/carbon correlations yield the constitution. J couplings and NOEs oftentimes supported by one-bond 1H,13C residual dipolar couplings (RDCs) or by 13C residual chemical shift anisotropies (RCSAs) provide the relative configuration. However, these RDCs or carbon RCSAs rely on 1% natural abundance of 13C preventing their use for compounds available only in quantities of a few 10’s of µgs. By contrast, 1H RCSAs provide similar information on spatial orientation of structural moieties within a molecule, while using the abundant 1H spin. Herein, 1H RCSAs are accurately measured using constrained aligning gels or liquid crystals and applied to the 3D structural determination of molecules with varying complexities. Even more, deuterated alignment media allow the elucidation of the relative configuration of around 35 µg of a briarane compound isolated from Briareum asbestinum.This work was supported by the Max Planck Society and grew out of a collaboration in the context of the Forschergruppe (FOR 934) continued now by the DFG (Gr1211/19–1 and Re1007/9–1)/CAPES 418729698 project. N.N. gratefully acknowledges the financial support by SERB, New Delhi for ECR Grant with File No.: ECR/2017/001811. This work was also funded by grants RTI2018-093634-B-C22 from the State Agency for Research (AEI) of Spain, both co-funded by the FEDER Programme from the European Union, BLUEBIOLAB (0474_BLUEBIOLAB_1_E), Programme INTERREG V A of Spain-Portugal (POCTEP) and GRC2018/039 and Agrupación Estratégica CICA-INIBIC ED431E 2018/03 from Xunta de Galicia. C.J., J.R., and D.P.P. acknowledge CESGA for the computational support. J.C.F. acknowledges predoctoral research stay grant Inditex-UDC. D.P.P. received a fellowship from the program National Council of Science and Technology (CONACYT) of Mexico and the Secretariat of Research, Innovation and Higher Education (SIIES) of Yucatan (Mexico). We also thank Dr. G. Jithender Reddy for one isotropic measurement. We also thank Dr. Christian Schmidt for his cooperation in the manufacturing of micro stretching device. ANV thanks CNPq for a research fellowship and financial support M(426216/2018–0)German Research Foundation; Gr1211/19–1German Research Foundation; Re1007/9–1Brasil. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); 418729698República de la India. Science and Engineering Research Board; ECR/2017/001811Xunta de Galicia; 0474_BLUEBIOLAB_1_EXunta de Galicia; GRC2018/039Xunta de Galicia; ED431E 2018/03Brasil. Conselho Nacional de Desenvolvimento Científico e Tecnológico; M(426216/2018–0

    Enantiodiscrimination and extraction of short and long range homo- and hetero-nuclear residual dipolar couplings by a spin selective correlation experiment

    No full text
    A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including C-13 satellites is proposed. The method employs a single natural abundant C-13 spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters. (C) 2010 Elsevier B.V. All rights reserved

    Quantification of enantiomeric excess by H-1-detected heteronuclear refocusing and homonuclear multiple quantum NMR experiments

    No full text
    The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved

    Demixing of severely overlapped H-1 NMR resonances and interpretation of anomalous intensity pattern of dipolar coupled A(3) spins in a weakly aligning medium

    No full text
    We report a single C-13 spin edited selective proton-proton correlation experiment to decipher overcrowded 13C coupled proton NMR spectra of weakly dipolar coupled spin systems. The experiment unravels the masked C-13 satellites in proton spectrum and permits the measurement of one bond carbon-proton residual dipolar couplings in I3S and for each diastereotopic proton in I2S groups. It also provides all the possible homonuclear proton-proton residual couplings which are otherwise difficult to extract from the broad and featureless one dimensional H-1 spectrum, in addition to enantiodifferentiation in a chiral molecule. Employment of heteronuclear (C-13) decoupling in the evolution period results in complete demixing of overlapped signals from enantiomers. The observed anomalous intensity pattern in strongly dipolar coupled methyl protons in methyl selective correlation experiment has been interpreted using polarization operator formalism. (C) 2010 Elsevier Inc. All rights reserved

    Spin-Selective Correlation Experiment for Measurement of Long-Range J Couplings and for Assignment of (R/S) Enantiomers from the Residual Dipolar Couplings and DFT

    No full text
    We report the C-HETSERF experiment for determination of long- and short-range homo- and heteronuclear scalar couplings ((n)J(HH) and (n)J(XH), n >= 1) of organic molecules with a low sensitivity dilute heteronucleus in natural abundance. The method finds significant advantage in measurement of relative signs of long-range heteronuclear total couplings in chiral organic liquid crystal. The advantage of the method is demonstrated for the measurement of residual dipolar couplings (RDCs) in enantiomers oriented in the chiral liquid crystal with a focus to unambiguously assign R/S designation in a 2D spectrum. The alignment tensor calculated from the experimental RDCs and with the computed structures of enantiomers obtained by DFT calculations provides the size of the back-calculated RDCs. Smaller root-mean-square deviations (rmsd) between experimental and calculated RDCs indicate better agreement with the input structure and its correct designation of the stereogenic center

    Measurement and Applications of Long-Range Heteronuclear Scalar Couplings: Recent Experimental and Theoretical Developments

    No full text
    The use of long-range heteronuclear couplings, in association with 1H1H scalar couplings and NOE restraints, has acquired growing importance for the determination of the relative stereochemistry, and structural and conformational information of organic and biological molecules. However, the routine use of such couplings is hindered by the inherent difficulties in their measurement. Prior to the advancement in experimental techniques, both long-range homo- and heteronuclear scalar couplings were not easily accessible, especially for very large molecules. The development of a large number of multidimensional NMR experimental methodologies has alleviated the complications associated with the measurement of couplings of smaller strengths. Subsequent application of these methods and the utilization of determined J-couplings for structure calculations have revolutionized this area of research. Problems in organic, inorganic and biophysical chemistry have also been solved by utilizing the short- and long-range heteronuclear couplings. In this minireview, we discuss the advantages and limitations of a number of experimental techniques reported in recent times for the measurement of long-range heteronuclear couplings and a few selected applications of such couplings. This includes the study of medium- to larger-sized molecules in a variety of applications, especially in the study of hydrogen bonding in biological systems. The utilization of these couplings in conjunction with theoretical calculations to arrive at conclusions on the hyperconjugation, configurational analysis and the effect of the electronegativity of the substituents is also discussed

    Visualization of enantiomers using natural abundant 13C-filtered single and double quantum selective refocusing experiments: Application to small chiral molecules

    No full text
    The routine use of proton NMR for the visualization of enantiomers, aligned in the chiral liquid crystal solvent poly-γ-benzyl-l-glutamate (PBLG), is restricted due to severe loss of resolution arising from large number of pair wise interaction of nuclear spins. In the present study, we have designed two experimental techniques for their visualization utilizing the natural abundance 13C edited selective refocusing of single quantum (CH-SERF) and double quantum (CH-DQSERF) coherences. The methods achieve chiral discrimination and aid in the simultaneous determination of homonuclear couplings between active and passive spins and heteronuclear couplings between the excited protons and the participating 13C spin. The CH-SERF also overcomes the problem of overlap of central transitions of the methyl selective refocusing (SERF) experiment resulting in better chiral discrimination. Theoretical description of the evolution of magnetization in both the sequences has been discussed using polarization operator formalism
    corecore