22 research outputs found

    Epigenetic Contribution of High-Mobility Group A Proteins to Stem Cell Properties

    No full text
    High-mobility group A (HMGA) proteins have been examined to understand their participation as structural epigenetic chromatin factors that confer stem-like properties to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and cancer stem cells (CSCs). The function of HMGA was evaluated in conjunction with that of other epigenetic factors such as histones and microRNAs (miRs), taking into consideration the posttranscriptional modifications (PTMs) of histones (acetylation and methylation) and DNA methylation. HMGA proteins were coordinated or associated with histone and DNA modification and the expression of the factors related to pluripotency. CSCs showed remarkable differences compared with ESCs and iPSCs

    In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

    Get PDF
    Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD) optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells

    Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins

    No full text
    Ullrich congenital muscular dystrophy is a severe genetically and clinically heterogeneous muscle disorder linked to collagen VI deficiency. The pathogenesis of the disease is unknown. To assess the potential role of mitochondrial dysfunction in the onset of muscle fiber death in this form of dystrophy, we studied biopsies and myoblast cultures obtained from patients with different genetic defects of collagen VI and variable clinical presentations of the disease. We identified a latent mitochondrial dysfunction in myoblasts from patients with Ullrich congenital muscular dystrophy that matched an increased occurrence of spontaneous apoptosis. Unlike those in myoblasts from healthy donors, mitochondria in cells from patients depolarized upon addition of oligomycin and displayed ultrastructural alterations that were worsened by treatment with oligomycin. The increased apoptosis, the ultrastructural defects, and the anomalous response to oligomycin could be normalized by Ca(2+) chelators, by plating cells on collagen VI, and by treatment with cyclosporin A or with the specific cyclophilin inhibitor methylAla(3)ethylVal(4)-cyclosporin, which does not affect calcineurin activity. Here we demonstrate that mitochondrial dysfunction plays an important role in muscle cell wasting in Ullrich congenital muscular dystrophy. This study represents an essential step toward a pharmacological therapy of Ullrich congenital muscular dystrophy with cyclosporin A and methylAla(3)ethylVal(4) cyclosporin

    Role of Tumor Associated Fibroblasts in Human Liver Regeneration, Cirrhosis, and Cancer

    Get PDF
    Tumor associated fibroblasts (TAFs) are considered a microenvironmental element critical for tumor growth and progression. Experimental studies suggest that their origin could be from mesenchymal stem cells (MSCs) derived from the bone marrow. However, the role played by TAFs in cirrhosis, hepatocellular carcinoma development, and progression is largely unknown, and in vitro human models are missing. This paper for the first time demonstrates that (1) human neoplastic livers possess a population of multipotent adult stem cells (MASCs) with properties of TAFs; (2) a population of MASC-derived TAFs is already present in cirrhotic, not yet neoplastic, livers; (3) MASCs isolated from nonneoplastic and noncirrhotic liver scan acquire a TAF phenotype when grown in a medium conditioned by tumor cell lines, supporting the notion that TAF could originate from resident primitive cells (MASCs), possibly through a paracrine mechanism

    Adipose tissue derived stem cells: in vitro

    Get PDF
    Autologous fat grafting is commonly used to correct soft-tissue contour deformities. However, results are impaired by a variable and unpredictable resorption rate. Autologous adipose-derived stromal cells in combination with lipoinjection (cell-assisted lipotransfer) seem to favor a long-term persistence of fat grafts, thus fostering the development of devices to be used in the operating room at the point of care, to isolate the stromal vascular fraction (SVF) and produce SVF-enhanced fat grafts with safe and standardized protocols. Focusing on patients undergoing breast reconstruction by lipostructure, we analyzed a standard technique, a modification of the Coleman's procedure, and three different commercially available devices (Lipokit, Cytori, Fastem), in terms of 1) ability to enrich fat grafts in stem cells and 2) clinical outcome at 6 and 12 months.To evaluate the ability to enrich stem cells, we compared, for each patient (n = 20), the standard lipoaspirate with the respective stem cell-enriched one, analyzing yield, immunophenotype and colony-forming capacity of the SVF cells as well as immunophenotype, clonogenicity and multipotency of the obtained adipose stem cells (ASCs). Regarding the clinical outcome, we compared, by ultrasonography imaging, changes at 6 and 12 months in the subcutaneous thickness of patients treated with stem-cell enriched (n = 14) and standard lipoaspirates (n = 16).Both methods relying on the enzymatic isolation of primitive cells led to significant increase in the frequency, in the fat grafts, of SVF cells as well as of clonogenic and multipotent ASCs, while the enrichment was less prominent for the device based on the mechanical isolation of the SVF. From a clinical point of view, patients treated with SVF-enhanced fat grafts demonstrated, at six months, a significant superior gain of thickness of both the central and superior-medial quadrants with respect to patients treated with standard lipotransfer. In the median-median quadrant the effect was still persistent at 12 months, confirming an advantage of lipotransfer technique in enriching improving long-term fat grafts.This comparative study, based on reproducible biological and clinical parameters and endpoints, showed an advantage of lipotransfer technique in enriching fat grafts in stem cells and in favoring, clinically, long-term fat grafts

    The redox function of APE1 is involved in the differentiation process of stem cells toward a neuronal cell fate.

    Get PDF
    Low-to-moderate levels of reactive oxygen species (ROS) govern different steps of neurogenesis via molecular pathways that have been decrypted only partially. Although it has been postulated that redox-sensitive molecules are involved in neuronal differentiation, the molecular bases for this process have not been elucidated yet. The aim of this work was therefore to study the role played by the redox-sensitive, multifunctional protein APE1/Ref-1 (APE1) in the differentiation process of human adipose tissue-derived multipotent adult stem cells (hAT-MASC) and embryonic carcinoma stem cells (EC) towards a neuronal phenotype.Applying a definite protocol, hAT-MASC can adopt a neural fate. During this maturation process, differentiating cells significantly increase their intracellular Reactive Oxygen Species (ROS) levels and increase the APE1 nuclear fraction bound to chromatin. This latter event is paralleled by the increase of nuclear NF-κB, a transcription factor regulated by APE1 in a redox-dependent fashion. Importantly, the addition of the antioxidant N-acetyl cysteine (NAC) to the differentiation medium partially prevents the nuclear accumulation of APE1, increasing the neuronal differentiation of hAT-MASC. To investigate the involvement of APE1 in the differentiation process, we employed E3330, a specific inhibitor of the APE1 redox function. The addition of E3330, either to the neurogenic embryonic carcinoma cell line NT2-D1or to hAT-MASC, increases the differentiation of stem cells towards a neural phenotype, biasing the differentiation towards specific subtypes, such as dopaminergic cells. In conclusion, during the differentiation process of stem cells towards a neuroectodermic phenotype, APE1 is recruited, in a ROS-dependent manner, to the chromatin. This event is associated with an inhibitory effect of APE1 on neurogenesis that may be reversed by E3330. Therefore, E3330 may be employed both to boost neural differentiation and to bias the differentiation potential of stem cells towards specific neuronal subtypes. These findings provide a molecular basis for the redox-mediated hypothesis of neuronal differentiation program
    corecore