13 research outputs found

    A Main Sequence for Quasars

    Get PDF
    AD and MM-A acknowledge financial support from the Spanish Ministry for Economy and Competitiveness through grants AYA2013-42227-P and AYA2016-76682-C3-1-P. DD and CN acknowledge support from grants PAPIIT108716, UNAM, and CONACyT221398. EB and NB acknowledge grants 176003 Gravitation and the large scale structure of the Universe and 176001 Astrophysical spectroscopy of extragalactic objects supported by the Ministry of Education and Science of the Republic of Serbia

    The quasar main sequence and its potential for cosmology

    Get PDF
    Nuclear Activity in Galaxies Across Cosmic Time, Proceedings of the conference held 7-11 October 2019 in Addis Ababa, Ethiopia. Edited by Mirjana Pović et al. Proceedings of the International Astronomical Union, Volume 356, pp. 66-71The main sequence offers a method for the systematization of quasar spectral properties. Extreme FeII emitters (or extreme Population A, xA) are believed to be sources accreting matter at very high rates. They are easily identifiable along the quasar main sequence, in large spectroscopic surveys over a broad redshift range. The very high accretion rate makes it possible that massive black holes hosted in xA quasars radiate at a stable, extreme luminosity-to-mass ratio. After reviewing the basic interpretation of the main sequence, we report on the possibility of identifying virial broadening estimators from low-ionization line widths, and provide evidence of the conceptual validity of redshift-independent luminosities based on virial broadening for a known luminosity-to-mass ratio.AdO acknowledges financial support from Spanish grants AYA2016-76682-C3-1-P and SEV-2017-0709

    A Main Sequence for Quasars

    Get PDF
    Open Access.-Attribution 4.0 International (CC BY 4.0)The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called >main sequence> associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.© Copyright © 2018 Marziani, Dultzin, Sulentic, Del Olmo, Negrete, Martínez-Aldama, D'Onofrio, Bon, Bon and Stirpe.AD and MM-A acknowledge financial support from the Spanish Ministry for Economy and Competitiveness through grants AYA2013-42227-P and AYA2016-76682-C3-1-P. DD and CN acknowledge support from grants PAPIIT108716, UNAM, and CONACyT221398. EB and NB acknowledge grants 176003 Gravitation and the large scale structure of the Universe and 176001 Astrophysical spectroscopy of extragalactic objects supported by the Ministry of Education and Science of the Republic of Serbia

    Quasar Black Hole Mass Estimates from High-Ionization Lines: Breaking a Taboo?

    Get PDF
    Can high ionization lines such as CIV λ 1549 provide useful virial broadening estimators for computing the mass of the supermassive black holes that power the quasar phenomenon? The question has been dismissed by several workers as a rhetorical one because blue-shifted, non-virial emission associated with gas outflows is often prominent in CIV λ 1549 line profiles. In this contribution, we first summarize the evidence suggesting that the FWHM of low-ionization lines like H β and MgII λ 2800 provide reliable virial broadening estimators over a broad range of luminosity. We confirm that the line widths of CIV λ 1549 is not immediately offering a virial broadening estimator equivalent to the width of low-ionization lines. However, capitalizing on the results of Coatman et al. (2016) and Sulentic et al. (2017), we suggest a correction to FWHM CIV λ 1549 for Eddington ratio and luminosity effects that, however, remains cumbersome to apply in practice. Intermediate ionization lines (IP ∼ 20–30 eV; AlIII λ 1860 and SiIII] λ 1892) may provide a better virial broadening estimator for high redshift quasars, but larger samples are needed to assess their reliability. Ultimately, they may be associated with the broad-line region radius estimated from the photoionization method introduced by Negrete et al. (2013) to obtain black hole mass estimates independent from scaling laws

    Quasar Black Hole Mass Estimates from High-Ionization Lines: Breaking a Taboo?

    Get PDF
    Can high ionization lines such as CIV λ 1549 provide useful virial broadening estimators for computing the mass of the supermassive black holes that power the quasar phenomenon? The question has been dismissed by several workers as a rhetorical one because blue-shifted, non-virial emission associated with gas outflows is often prominent in CIV λ 1549 line profiles. In this contribution, we first summarize the evidence suggesting that the FWHM of low-ionization lines like H β and MgII λ 2800 provide reliable virial broadening estimators over a broad range of luminosity. We confirm that the line widths of CIV λ 1549 is not immediately offering a virial broadening estimator equivalent to the width of low-ionization lines. However, capitalizing on the results of Coatman et al. (2016) and Sulentic et al. (2017), we suggest a correction to FWHM CIV λ 1549 for Eddington ratio and luminosity effects that, however, remains cumbersome to apply in practice. Intermediate ionization lines (IP ∼ 20–30 eV; AlIII λ 1860 and SiIII] λ 1892) may provide a better virial broadening estimator for high redshift quasars, but larger samples are needed to assess their reliability. Ultimately, they may be associated with the broad-line region radius estimated from the photoionization method introduced by Negrete et al. (2013) to obtain black hole mass estimates independent from scaling laws

    Quasars: From the Physics of Line Formation to Cosmology

    Get PDF
    Quasars accreting matter at very high rates (known as extreme Population A (xA) or super-Eddington accreting massive black holes) provide a new class of distance indicators covering cosmic epochs from the present-day Universe up to less than 1 Gyr from the Big Bang. The very high accretion rate makes it possible that massive black holes hosted in xA quasars can radiate at a stable, extreme luminosity-to-mass ratio. This in turn translates into stable physical and dynamical conditions of the mildly ionized gas in the quasar low-ionization line emitting region. In this contribution, we analyze the main optical and UV spectral properties of extreme Population A quasars that make them easily identifiable in large spectroscopic surveys at low- (z . 1) and intermediate-z (2 . z . 2.6), and the physical conditions that are derived for the formation of their emission lines. Ultimately, the analysis supports the possibility of identifying a virial broadening estimator from low-ionization line widths, and the conceptual validity of the redshift-independent luminosity estimates based on virial broadening for a known luminosity-to-mass ratioP.M. wishes to thank the Scientific Organizing Committee of the Symposium on the Physics of Ionized Gases (SPIG 2018) meeting for inviting the topical lecture on which this paper is based, and acknowledges the Programa de Estancias de Investigación (PREI) No. DGAP/DFA/2192/2018 of Universidad Nacional Autónoma de México (UNAM), where this paper was written. The relevant research is part of the project 176001 “Astrophysical spectroscopy of extragalactic objects” and 176003 “Gravitation and the large scale structure of the Universe” supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. M.L.M.-A. acknowledges a CONACyT postdoctoral fellowship. A.d.O. and M.L.M.-A. acknowledge financial support from the Spanish Ministry for Economy and Competitiveness through Grant Nos. AYA2013-42227-P and AYA2016-76682-C3-1-P. M.L.M.-A, P.M. and M.D. acknowledge funding from the INAF PRIN-SKA 2017 program 1.05.01.88.04. D.D. and A.N. acknowledge support from CONACyT through Grant No. CB221398. D.D. and C.A.N. are also thankful for the support from Grant No. IN108716 53 PAPIIT, UNAMWe acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)Peer reviewe

    A main sequence for quasars

    Get PDF
    The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles

    Extreme Quasars as Distance Indicators in Cosmology

    No full text
    Quasars accreting matter at very high rates (known as extreme Population A [xA] quasars, possibly associated with super-Eddington accreting massive black holes) may provide a new class of distance indicators covering cosmic epochs from present day up to less than 1 Gyr from the Big Bang. At a more fundamental level, xA quasars are of special interest in studies of the physics of AGNs and host galaxy evolution. However, their observational properties are largely unknown. xA quasars can be identified in relatively large numbers from major optical surveys over a broad range of redshifts, and efficiently separated from other type-1 quasars thanks to selection criteria defined from the systematically-changing properties along the quasars main sequence. It has been possible to build a sample of ~250 quasars at low and intermediate redshift, and larger samples can be easily selected from the latest data releases of the Sloan Digital Sky Survey. A large sample can clarify the main properties of xA quasars which are expected—unlike the general population of quasars—to radiate at an extreme, well-defined Eddington ratio with small scatter. As a result of the small scatter in Eddington ratio shown by xA quasars, we propose a method to derive the main cosmological parameters based on redshift-independent “virial luminosity” estimates from measurements of emission line widths, roughly equivalent to the luminosity estimates based from line width in early and late type galaxies. A major issue related to the cosmological application of the xA quasar luminosity estimates from line widths is the identification of proper emission lines whose broadening is predominantly virial over a wide range of redshift and luminosity. We report on preliminary developments using the AlIIIλ1860 intermediate ionization line and the Hydrogen Balmer line Hβ as virial broadening estimators, and we briefly discuss the perspective of the method based on xA quasars. © Copyright © 2020 Dultzin, Marziani, de Diego, Negrete, Del Olmo, Martínez-Aldama, D'Onofrio, Bon, Bon and Stirpe.This research is part of the projects 176001-Astrophysical spectroscopy of extragalactic objects and 176003-Gravitation and the large scale structure of the Universe, funded by Ministry of Education, Science and Technological Development of the Republic of Serbia.Peer reviewe

    The main sequence of quasars: The taming of the extremes

    No full text
    The last few years have seen the confirmation of several trends associated with the quasar main sequence. The idea of a main sequence for quasars is relatively recent, and its full potential for the observational classification and contextualization of quasars' properties has yet to be fully exploited. The main sequence drivers are discussed in terms of the properties of extreme objects. We briefly summarize developments that constrain the viewing angle of the accretion disk in a particular class of quasars (extreme Population B, radiating at low Eddington ratio), as well as inferences on the chemical composition of the broad line emitting gas, and on the nature of radio emission along the quasar main sequence. © 2021 Wiley-VCH GmbH.N. Bon and E. Bon acknowledge the support of Serbian Ministry of Education, Science and Technological Development, through the contract number 451-03-68/2020-14/200002.With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709.Peer reviewe

    Serbian Virtual Observatory and Virtual Atomic and Molecular Data Center (VAMDC)

    No full text
    International audienceIn this lecture we review recent developments in Serbian Virtual Observatory (SerVO) as well as its relation with the European FP7 project: Virtual Atomic and Molecular Data Center - VAMDC. Main components of SerVO are going to be the archive of photographic plates, database of Stark broadening parameters and stellar evolution database. Photographic plates were obtained at Belgrade Observatory from 1936 to 1996. Data for Stark broadening were obtained using semiclassical perturbation and modified semiempirical theories mainly in collaboration with Paris Observatory, and we are organizing them now in the STARK-B database, which will enter also in VAMDC, and will have a mirror site in SerVO. Serbian Virtual Observatory will contain as well a mirror of Darthmouth Stellar evolution database with improvements and VO compatible outputs
    corecore