44 research outputs found
Real-Space Inversion and Super-Resolution of Ultrafast Scattering using Natural Scattering Kernels
Directly resolving in real-space multiple atomic motions using ultrafast
x-ray or electron scattering is generally limited by the finite detector range.
As a result, signal interpretation mostly relies on modeling and simulations of
specific excitation pathways. Here, we introduce an approach to resolve
ultrafast diffuse scattering signals in real space below the diffraction limit,
and recover multiple atomic motions de-novo, using a scattering basis
representation that is composed of the measurement parameters and constraints,
and the subsequent inversion analysis. We leverage signal priors, such as
smoothness and sparsity to deconvolve the spatially transformed signals using
convex optimization. We validate the approach on simulated and experimental
data, demonstrate super-resolution in real space, and discuss the recovery
accuracy and resolution limits vs signal fidelity.Comment: 6 pages, 4 figure
A Qubit-Efficient Variational Selected Configuration-Interaction Method
Finding the ground-state energy of molecules is an important and challenging
computational problem for which quantum computing can potentially find
efficient solutions. The variational quantum eigensolver (VQE) is a quantum
algorithm that tackles the molecular groundstate problem and is regarded as one
of the flagships of quantum computing. Yet, to date, only very small molecules
were computed via VQE, due to high noise levels in current quantum devices.
Here we present an alternative variational quantum scheme that requires
significantly less qubits. The reduction in qubit number allows for shallower
circuits to be sufficient, rendering the method more resistant to noise. The
proposed algorithm, termed variational quantum
selected-configuration-interaction (VQ-SCI), is based on: (a) representing the
target groundstate as a superposition of Slater determinant configurations,
encoded directly upon the quantum computational basis states; and (b) selecting
a-priory only the most dominant configurations. This is demonstrated through a
set of groundstate calculations of the H, LiH, BeH, HO, NH and
CH molecules in the sto-3g basis set, performed on IBM quantum devices.
We show that the VQ-SCI reaches the full-CI (FCI) energy within chemical
accuracy using the lowest number of qubits reported to date. Moreover, when the
SCI matrix is generated ``on the fly", the VQ-SCI requires exponentially less
memory than classical SCI methods. This offers a potential remedy to a severe
memory bottleneck problem in classical SCI calculations. Finally, the proposed
scheme is general and can be straightforwardly applied for finding the
groundstate of any Hermitian matrix, outside the chemical context.Comment: 32 pages, 5 figure
Standoff Detection via Single-Beam Spectral Notch Filtered Pulses
We demonstrate single-beam coherent anti-Stokes Raman spectroscopy (CARS),
for detecting and identifying traces of solids, including minute amounts of
explosives, from a standoff distance (>50 m) using intense femtosecond pulses.
Until now, single-beam CARS methods relied on pulse-shapers in order to obtain
vibrational spectra. Here we present a simple and easy-to-implement detection
scheme, using a commercially available notch filter, that does not require the
use of a pulse-shaper.Comment: 3 pages, 3 figure
Quantum Control of Photodissociation via Manipulation of Bond Softening
We present a method to control photodissociation by manipulating the bond
softening mechanism occurring in strong shaped laser fields, by varying the
chirp sign and magnitude of an ultra-short laser pulse. Manipulation of
bond-softening is experimentally demonstrated for strong field (795 nm, 10^12 -
10^13 W/cm^2) photodissociation of H2+, exhibiting substantial increase of
dissociation by positively chirped pulses with respect to both negatively
chirped and transform limited pulses. The measured kinetic energy release and
angular distributions are used to quantify the degree of control of
dissociation. The control mechanism is attributed to the interplay of dynamic
alignment and chirped light induced potential curves.Comment: 4 pages, 4 figure
Strongly aligned gas-phase molecules at Free-Electron Lasers
We demonstrate a novel experimental implementation to strongly align
molecules at full repetition rates of free-electron lasers. We utilized the
available in-house laser system at the coherent x-ray imaging beamline at the
Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output
from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser
system, were used to strongly align 2,5-diiodothiophene molecules in a
molecular beam. The alignment laser pulses had pulse energies of a few mJ and a
pulse duration of 94 ps. A degree of alignment of
\left = 0.85 was measured, limited by the
intrinsic temperature of the molecular beam rather than by the available laser
system. With the general availability of synchronized chirped-pulse-amplified
near-infrared laser systems at short-wavelength laser facilities, our approach
allows for the universal preparation of molecules tightly fixed in space for
experiments with x-ray pulses.Comment: 10 pages, 5 figure
When all computers shut down: the clinical impact of a major cyber-attack on a general hospital
ImportanceHealthcare organizations operate in a data-rich environment and depend on digital computerized systems; thus, they may be exposed to cyber threats. Indeed, one of the most vulnerable sectors to hacks and malware is healthcare. However, the impact of cyberattacks on healthcare organizations remains under-investigated.ObjectiveThis study aims to describe a major attack on an entire medical center that resulted in a complete shutdown of all computer systems and to identify the critical actions required to resume regular operations.SettingThis study was conducted on a public, general, and acute care referral university teaching hospital.MethodsWe report the different recovery measures on various hospital clinical activities and their impact on clinical work.ResultsThe system malfunction of hospital computers did not reduce the number of heart catheterizations, births, or outpatient clinic visits. However, a sharp drop in surgical activities, emergency room visits, and total hospital occupancy was observed immediately and during the first postattack week. A gradual increase in all clinical activities was detected starting in the second week after the attack, with a significant increase of 30% associated with the restoration of the electronic medical records (EMR) and laboratory module and a 50% increase associated with the return of the imaging module archiving. One limitation of the present study is that, due to its retrospective design, there were no data regarding the number of elective internal care hospitalizations that were considered crucial.Conclusions and relevanceThe risk of ransomware cyberattacks is growing. Healthcare systems at all levels of the hospital should be aware of this threat and implement protocols should this catastrophic event occur. Careful evaluation of steady computer system recovery weekly enables vital hospital function, even under a major cyberattack. The restoration of EMR, laboratory systems, and imaging archiving modules was found to be the most significant factor that allowed the return to normal clinical hospital work
X-ray diffractive imaging of controlled gas-phase molecules: Toward imaging of dynamics in the molecular frame
We report experimental results on the diffractive imaging of
three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were
aligned by chirped near-infrared laser pulses, and their structure was probed
at a photon energy of 9.5 keV () provided by the
Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD
detector and a two-dimensional diffraction pattern of the equilibrium structure
of 2,5-diiodothiophene was recorded. The retrieved distance between the two
iodine atoms agrees with the quantum-chemically calculated molecular structure
to within 5 %. The experimental approach allows for the imaging of intrinsic
molecular dynamics in the molecular frame, albeit this requires more
experimental data which should be readily available at upcoming
high-repetition-rate facilities