42 research outputs found

    Anti-carbamylated protein antibodies as a new biomarker of erosive joint damage in systemic lupus erythematosus

    Get PDF
    Background: The application of more sensitive imaging techniques, such as ultrasonography (US), changed the concept of non-erosive arthritis in systemic lupus erythematosus (SLE), underlining the need for biomarkers to identify patients developing the erosive phenotype. Anti-citrullinated peptide antibodies (ACPA), associated with erosions in inflammatory arthritis, have been identified in about 50% of patients with SLE with erosive arthritis. More recently, anti-carbamylated proteins antibodies (anti-CarP) have been associated with erosive damage in rheumatoid arthritis. We aimed to assess the association between anti-CarP and erosive damage in a large SLE cohort with joint involvement. Methods: We evaluated 152 patients (male/female patients 11/141; median age 46years, IQR 16; median disease duration 108months, IQR 168). All patients underwent blood draw to detect rheumatoid factor (RF) and ACPA (commercial enzyme-linked immunosorbent assay (ELISA) kit), and anti-CarP ("home-made" ELISA, cutoff 340aU/mL). The bone surfaces of the metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered as a dichotomous value (0/1), obtaining a total score (0-20). Results: The prevalence of anti-CarP was 28.3%, similar to RF (27.6%) and significantly higher than ACPA (11.2%, p=0.003). Erosive arthritis was identified in 25.6% of patients: this phenotype was significantly associated with anti-CarP (p=0.004). Significant correlation between anti-CarP titer and US erosive score was observed (r=0.2, p=0.01). Conclusions: Significant association was identified between anti-CarP and erosive damage in SLE-related arthritis, in terms of frequency and severity, suggesting that these antibodies can represent a biomarker of severity in patients with SLE with joint involvement

    Development of systemic autoimmune diseases in healthy subjects persistently positive for antiphospholipid antibodies. long-term follow-up study

    Get PDF
    We longitudinally followed a single-center cohort of anti-phospholipid (aPL) positive healthy subjects to evaluate the evolution to systemic autoimmune diseases (sAD) and to describe clinical and serological associated features. Since 2010, we have consecutively screened healthy subjects who were positive, in at least two consecutive determinations, for one or more aPL [anti-Cardiolipin (aCL) IgM/IgG, anti-Beta2Glycoprotein I (aB2GPI) IgM/IgG, Lupus Anticoagulant (LA)]. All subjects were evaluated every six months, or in accordance with the patient's clinical course, in order to record the development of clinical and laboratory features suggestive for sAD. Ninety-five subjects [M/F 20/75, median age at first determination 46 years, Interquartile Range (IQR) 19] were enrolled. Thirty-three subjects (34.7%) were positive for only one aPL [15 (15.8%) for aCL, 15 (15.8%) for LA, and 5 (5.3%) for aB2GPI]; 37 (38.9%) had double positivity [32 (33.6%) for aCL and aB2GPI; 5 (5.3%) for aCL and LA], 23 (24.2%) had triple positivity. We prospectively followed up our cohort for a median period of 72 months (IQR 84). During a total follow-up of 7692 person-months, we found an absolute risk for sAD development equal to 1.8%. Specifically, 14 (14.7%) patients developed a sAD: in four patients (4.2%), after developing a thrombotic event, an antiphospholipid syndrome was diagnosed, 7 (7.4%) patients developed an Undifferentiated Connective Tissue Disease after a median period of 76 months (IQR 75.5), and lastly, three (3.1%) patients could be classified as affected by Systemic Lupus Erythematosus according to the ACR/EULAR 2019 criteria. The presence of triple positivity status resulted in being significantly associated with the progression to sAD (p-value = 0.03). In conclusion, we observed the development of sAD in almost 15% of aPL positive subjects. Triple positivity was significantly associated with this progression, suggesting a possible role as biomarker for this condition. Thus, our results could suggest the need for periodic follow-up for such patients to assess early diagnosis and treatment

    Kinesiology Students' Perception Regarding Exercise Oncology: A Cross-Sectional Study

    Get PDF
    none13noDelivering physical activity in cancer care requires knowledge, competence, and specific skills to adapt the exercise program to the patients' specific needs. Kinesiology students could be one of the main stakeholders involved in the promotion of physical activity. This study aims to investigate the knowledge, perception, and competence about exercise in patients with oncological disease in a sample of students attending the Sports Science University. A total of 854 students (13% response rate) from four Italian universities completed the online survey between May and June 2021. About half of the study participants identified the correct amount of aerobic (44%) and strength (54%) activities proposed by the American College of Sports Medicine for patients with cancer. Almost all the students recognized the importance of physical activity in cancer prevention (96%), in the management of cancer before surgery (96%), during anticancer treatments (84%), and after therapies completion (98%). On the contrary, they reported a lack of university courses dedicated to cancer diseases, psychological implications, and prescription of physical activity in all types of cancer prevention. Overall, few students felt qualified in delivered counseling about physical activity and individual or group-based exercise programs in patients with cancer. Logistic regression revealed that the students attending the Master's Degree in Preventive and Adapted Physical Activity were more likely to have knowledge and competence than other students. The present study suggests that kinesiology universities should increase the classes and internships about exercise oncology to train experts with specific skills who are able to adequately support patients in their lifestyle modification.Avancini, Alice; Ferri Marini, Carlo; Sperduti, Isabella; Natalucci, Valentina; Borsati, Anita; Pilotto, Sara; Cerulli, Claudia; Barbieri, Elena; Lucertini, Francesco; Lanza, Massimo; Parisi, Attilio; Grazioli, Elisa; Di Blasio, AndreaAvancini, Alice; Ferri Marini, Carlo; Sperduti, Isabella; Natalucci, Valentina; Borsati, Anita; Pilotto, Sara; Cerulli, Claudia; Barbieri, Elena; Lucertini, Francesco; Lanza, Massimo; Parisi, Attilio; Grazioli, Elisa; Di Blasio, Andre

    Kinesiology students' perception regarding exercise oncology: a cross-sectional study

    Get PDF
    Delivering physical activity in cancer care requires knowledge, competence, and specific skills to adapt the exercise program to the patients' specific needs. Kinesiology students could be one of the main stakeholders involved in the promotion of physical activity. This study aims to investigate the knowledge, perception, and competence about exercise in patients with oncological disease in a sample of students attending the Sports Science University. A total of 854 students (13% response rate) from four Italian universities completed the online survey between May and June 2021. About half of the study participants identified the correct amount of aerobic (44%) and strength (54%) activities proposed by the American College of Sports Medicine for patients with cancer. Almost all the students recognized the importance of physical activity in cancer prevention (96%), in the management of cancer before surgery (96%), during anticancer treatments (84%), and after therapies completion (98%). On the contrary, they reported a lack of university courses dedicated to cancer diseases, psychological implications, and prescription of physical activity in all types of cancer prevention. Overall, few students felt qualified in delivered counseling about physical activity and individual or group-based exercise programs in patients with cancer. Logistic regression revealed that the students attending the Master's Degree in Preventive and Adapted Physical Activity were more likely to have knowledge and competence than other students. The present study suggests that kinesiology universities should increase the classes and internships about exercise oncology to train experts with specific skills who are able to adequately support patients in their lifestyle modification

    SATURN: A Technological Demonstration Mission for Distributed SAR Imaging

    Get PDF
    The OHB-Italia S.p.A-led consortium is in the midst of Phase B of SATURN (Synthetic AperTure radar cUbesat foRmation flyiNg), part of ALCOR, an Italian Space Agency (ASI) programme promoting the development of the next generation Italian CubeSats. SATURN is a demonstration mission that features Multiple-Input-Multiple-Output (MIMO) technology applied to a Swarm of CubeSats equipped with Synthetic Aperture Radar (SAR) for Earth Observation. MIMO is based on cooperative active sensors, where each one transmits signals and receives the illuminated common area backscatter related to the entire swarm, increasing measurement performances with a trend approximatively equal to the square of the number of sensors. The complete SATURN constellation features 16 mini-swarms, each of 3 CubeSats, spread over 4 SSOs equally spaced by 3 hours of local time. The constellation is designed to provide an average revisit time of 1.5 h and an interferometric revisit time of 1 day worldwide. The aim of this demonstration mission is to verify MIMO technology applied to SAR on a mini-swarm of 3 CubeSats in close formation on a Low Earth Down-Dusk Sun Synchronous Orbit. Using OHB-I’s M3Multi Mission Modular platform equipped with a miniaturized SAR Instrument, developed by ARESYS S.r.l. and Airbus Italia S.p.A., our mission is able to achieve a resolution of 5x5 m over a 30 km swath. Thus, SATURN enables low-cost, scalable SAR missions for affordable access to space for public and private entities, overcoming the single point of failure of one large and complex satellite. Subsequent swarms, deploying from 3 to 48 CubeSats, are expected to bring technological innovations and improve Italy’s competitiveness in the European and global Earth Observation scenario

    Effects of a Home-Based Lifestyle Intervention Program on Cardiometabolic Health in Breast Cancer Survivors during the COVID-19 Lockdown

    Get PDF
    This study aimed to evaluate the cardiometabolic effects of a home-based lifestyle intervention (LI) in breast cancer survivors (BCSs) during the COVID-19 lockdown. In total, 30 BCSs (women; stages 0-II; non-metastatic; aged 53.5 ± 7.6 years; non-physically active; normal left ventricular systolic function) with a risk factor for recurrence underwent a 3-month LI based on nutrition and exercise. Anthropometrics, Mediterranean diet adherence, physical activity level (PAL), cardiorespiratory fitness (VO2max), echocardiographic parameters, heart rate variability (average standard deviation of NN intervals (ASDNN/5 min) and 24 h very- (24 hVLF) and low-frequency (24 hLF)), and metabolic, endocrine, and inflammatory serum biomarkers (glycemia, insulin resistance, progesterone, testosterone, and high-sensitivity C-reactive protein (hs-CRP)) were evaluated before (T0) and after (T1) the LI. After the LI, there were improvements in: body mass index (kg/m2: T0 = 26.0 ± 5.0, T1 = 25.5 ± 4.7; p = 0.035); diet (Mediet score: T0 = 6.9 ± 2.3, T1 = 8.8 ± 2.2; p < 0.001); PAL (MET-min/week: T0 = 647 ± 547, T1 = 1043 ± 564; p < 0.001); VO2max (mL·min-1·kg-1: T0 = 30.5 ± 5.8, T1 = 33.4 ± 6.8; p < 0.001); signs of diastolic dysfunction (participants: T0 = 15, T1 = 10; p = 0.007); AS-DNN/5 min (ms: T0 = 50.6 ± 14.4, T1 = 55.3 ± 16.7; p = 0.032); 24 hLF (ms2: T0 = 589 ± 391, T1 = 732 ± 542; p = 0.014); glycemia (mg/dL: T0 = 100.8 ± 11.4, T1 = 91.7 ± 11.0; p < 0.001); insulin resistance (HOMA-IR score: T0 = 2.07 ± 1.54, T1 = 1.53 ± 1.11; p = 0.005); testosterone (ng/mL: T0 = 0.34 ± 0.27, T1 = 0.24 ± 0.20; p = 0.003); hs-CRP (mg/L: T0 = 2.18 ± 2.14, T1 = 1.75 ± 1.74; p = 0.027). The other parameters did not change. Despite the home-confinement, LI based on exercise and nutrition improved cardiometabolic health in BCSs

    Autophagy hijacking in PBMC From COVID-19 patients results in lymphopenia

    Get PDF
    Autophagy is a homeostatic process responsible for the self-digestion of intracellular components and antimicrobial defense by inducing the degradation of pathogens into autophagolysosomes. Recent findings suggest an involvement of this process in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the role of autophagy in the immunological mechanisms of coronavirus disease 2019 (COVID-19) pathogenesis remains largely unexplored. This study reveals the presence of autophagy defects in peripheral immune cells from COVID-19 patients. The impairment of the autophagy process resulted in a higher percentage of lymphocytes undergoing apoptosis in COVID-19 patients. Moreover, the inverse correlation between autophagy markers levels and peripheral lymphocyte counts in COVID-19 patients confirms how a defect in autophagy might contribute to lymphopenia, causing a reduction in the activation of viral defense. These results provided intriguing data that could help in understanding the cellular underlying mechanisms in COVID-19 infection, especially in severe forms

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore