9 research outputs found

    Evolution of a novel orally bioavailable series of PI3Kδ inhibitors from an inhaled lead for the treatment of respiratory disease.

    Get PDF
    A four step process of high quality modelling of existing data, deconstruction, identification of replacement cores and an innovative synthetic re-growth strategy led to the rapid discovery of a novel oral series of PI3K δ inhibitors with promising selectivity and excellent in vivo characteristics

    A practical drug discovery project at the undergraduate level

    Get PDF
    A practical drug discovery project for third-year undergraduates is described. No previous knowledge of medicinal chemistry is assumed. Initial lecture-workshops cover the basic principles; then students are asked to improve the profile of a weakly potent, poorly soluble PI3K inhibitor (1). Compound array design, molecular modelling and screening data analysis are followed by laboratory work in which each student, as part of a team, attempts to synthesise at least two target compounds. The project benefits from significant industrial support, including lectures, student mentoring and consumables. The aim is to make the learning experience as close as possible to real-life industrial situations. Forty-eight target compounds have been prepared, the best of which (5b, 5j, 6b and 6ap) improved the potency and aqueous solubility of the lead compound (1) by 100-1000 fold and 10-fold, respectively

    A practical drug discovery project at the undergraduate level

    Get PDF
    Teaser'You make the compounds you design': this article describes a new way for chemistry undergraduates to learn about drug discovery. A practical drug discovery project at the undergraduate level In this article, we describe a practical drug discovery project for third-year undergraduates. No previous knowledge of medicinal chemistry is assumed. Initial lecture workshops cover the basic principles; then students, in teams, seek to improve the profile of a weakly potent, insoluble phosphatidylinositide 3-kinase delta (PI3Kd) inhibitor (1) through compound array design, molecular modelling, screening data analysis and the synthesis of target compounds in the laboratory. The project benefits from significant industrial support, including lectures, student mentoring and consumables. The aim is to make the learning experience as close as possible to real-life industrial situations. In total, 48 target compounds were prepared, the best of which (5b, 5j, 6b and 6ap) improved the potency and aqueous solubility of the lead compound (1) by 100-1000 fold and !tenfold, respectively. This article is an account of a 'hands-on' drug discovery course that has been running for the past 3 years at the University of Nottingham. The purpose is fivefold: (i) to teach students, who are in the third year of a 4-year MSci degree course, how new medicines are discovered; (ii) to give an appreciation of the role of the chemist in that process; (iii) to give students practice in compound design and data interpretation; (iv) to use industry-standard equipment and methods in the laboratory; and (v) to develop communication, team-working and interpersonal skills. Key aspects of the course included the participation of scientists from GlaxoSmithKline (GSK) as lecturers and workshop mentors and, above all, in the practical application of drug discovery principles in the laboratory

    An Integrated Direct-to-Biology Platform for the Nanoscale Synthesis and Biological Evaluation of PROTACs

    No full text
    ABSTRACT: Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules that co opt the cell’s natural proteasomal degradation mechanisms to selectively tag and degrade undesired proteins. However, a challenge associated with PROTACs is the difficult optimisation required to identify new degraders, thus the development of high-throughput platforms for their synthesis and biological evaluation is required. In this study, we establish an ultra high-throughput experimentation (ultraHTE) platform for PROTAC synthesis, followed by direct addition of the crude reaction mixtures to cellular degradation assays without any purification. This ‘Direct-to-Biology’ (D2B) approach was validated, then exem-plified in a medicinal chemistry campaign to identify novel BRD4 PROTACs from a BRD4-binding scaffold previously unexplored for targeted protein degradation. Using the D2B platform, the synthesis of over 600 PROTACs was carried out in a 1536-well plate and subsequent biological evaluation of these candidates was performed by a single scientist in less than one month, to identify a set of picomolar BRD4 degraders. Due to its ability to hugely accelerate the optimisation of new degraders, we anticipate our platform to transform the synthesis and testing of PROTACs

    Identification and optimization of a ligand-efficient benzoazepinone bromodomain and extra terminal (BET) family acetyl-lysine mimetic into the oral candidate quality molecule I-BET432

    No full text
    The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein–protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure–activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule

    Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I‑BET432

    No full text
    The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein–protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure–activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule

    Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I‑BET432

    No full text
    The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein–protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure–activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule

    Design, synthesis, and characterization of I-BET567, a pan-bromodomain and extra terminal (BET) bromodomain oral candidate

    No full text
    Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein–protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free–Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation
    corecore