8 research outputs found

    Modulation of the dimer interface at ionotropic glutamate-like receptor d2 by D-serine and extracellular calcium

    No full text
    GluRδ2 is a member of the iGluR family, but despite a prominent role in cerebellar synaptic plasticity, this receptor does not appear to function as an ion channel. Endogenous ligands that modulate the activity of native GluRδ2 in the cerebellum have not been identified, but two candidate modulators are D-serine and extracellular calcium. Taking advantage of known crystal structures and spontaneously active GluRδ2 receptors containing the lurcher mutation (GluRδ2(Lc)), we investigated the mechanism by which calcium and D-serine regulate the activity of GluRδ2(Lc). Our data suggest that calcium binding stabilizes the dimer interface formed between two agonist binding domains and increases GluRδ2(Lc) currents. The data further suggests that D-serine binding induces rearrangements at the dimer interface to diminish GluRδ2(Lc) currents by a mechanism that resembles desensitization at AMPA and kainate receptors. Thus, we propose that calcium and D-serine binding have opposing effects on the stability of the dimer interface. Furthermore, the effects of calcium are observed at concentrations that are within the physiological range, suggesting that the ability of native GluRδ2 to respond to ligand binding may be modulated by extracellular calcium. These findings place GluRδ2 among AMPA and kainate receptors, where the dimer interface is not only a biologically important site for functional regulation, but also an important target for exogenous and endogenous ligands that modulate receptor function

    Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    No full text
    The GluD2 receptor is a fundamental component of postsynaptic sites in Purkinje neurons, and is required for normal cerebellar function. GluD2 and the closely related GluD1 are classified as members of the ionotropic glutamate receptor (iGluR) superfamily on the basis of sequence similarity, but do not bind l-glutamate. The amino acid neurotransmitter D-Ser is a GluD2 receptor ligand, and endogenous D-Ser signaling through GluD2 has recently been shown to regulate endocytosis of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type iGluRs during synaptic plasticity in the cerebellum, such as long-term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify several compounds that modulate GluD2(LC), including a halogenated alanine analog as well as the kynurenic acid analog 7-chloro-4-oxo-1H-quinoline-2-carboxylic acid (7-chlorokynurenic acid; 7-CKA). By correlating thermodynamic and structural data for 7-CKA binding to the isolated GluD2 ligand binding domain (GluD2-LBD), we find that binding 7-CKA to GluD2-LBD differs from D-Ser by inducing an intermediate cleft closure of the clamshell-shaped LBD. The GluD2 ligands identified here can potentially serve as a starting point for development of GluD2-selective ligands useful as tools in studies of the signaling role of the GluD2 receptor in the brain

    Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    No full text
    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism

    Design, Synthesis, and Structure–Activity Relationship of a Novel Series of GluN2C-Selective Potentiators

    No full text
    NMDA receptors are tetrameric complexes composed of GluN1 and GluN2A–D subunits that mediate a slow Ca<sup>2+</sup><b>-</b>permeable component of excitatory synaptic transmission. NMDA receptors have been implicated in a wide range of neurological diseases and thus represent an important therapeutic target. We herein describe a novel series of pyrrolidinones that selectively potentiate only NMDA receptors that contain the GluN2C subunit. The most active analogues tested were over 100-fold selective for recombinant GluN2C-containing receptors over GluN2A/B/D-containing NMDA receptors as well as AMPA and kainate receptors. This series represents the first class of allosteric potentiators that are selective for diheteromeric GluN2C-containing NMDA receptors
    corecore