59 research outputs found

    Chronic rhinosinusitis : assessment of changes in nociceptive neurons

    Get PDF
    Background Pain is a major symptom of chronic rhinosinusitis (CRS). It is mainly associated with CRS without nasal polyps (CRSsNP) and has a major impact in the decision to move on to surgery. Patients with CRS with nasal polyps (CRSwNP) are characterized by trigeminal hypoesthesia and suffer from less pain. The aim of this study was to investigate whether CRS induces alterations in the peripheral nociceptive neurons, mainly focusing on quantitative changes. Methods Sinus mucosa and inferior turbinate (IT) samples were obtained from patients with CRS, and IT tissue of healthy patients served as controls. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed for neuronal markers including CNTNAP2, FAM19A1, GFRA2, NEFH, NTRK1, PLXNC1, RET, SCN10A, SCN11A, TRPV1, and PGP 9.5; enzyme-linked immunosorbent assay (ELISA) was performed for KCNK18, SCN10A, MRGPRD, and MAP2. For PGP 9.5, immunohistochemistry was additionally used to analyze tissue slides. Results We included 35 patients with CRSsNP, 47 patients with CRSwNP, and 18 control patients. No differences in expression of the neuronal markers were observed between CRSsNP, CRSwNP, and controls. SCN10A was the only marker exclusively expressed on nociceptive neurons in sinus tissue. No histological difference in nerve fibers was observed between sinus mucosa of both phenotypes. Conclusion Our results indicate that the nociceptive nerve density in CRSwNP is not lower than in CRSsNP, as was assumed previously. The nociceptive neurons in sinonasal mucosa cannot be classified into subtypes due to the lack of specificity of the respective marker genes. Our findings question the generally accepted claim that nasal polyp tissue does not contain any nerves

    Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers

    Get PDF
    Background: Current phenotyping of chronic rhinosinusitis (CRS) into chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP) might not adequately reflect the pathophysiologic diversity within patients with CRS. Objective: We sought to identify inflammatory endotypes of CRS. Therefore we aimed to cluster patients with CRS based solely on immune markers in a phenotype-free approach. Secondarily, we aimed to match clusters to phenotypes. Methods: In this multicenter case-control study patients with CRS and control subjects underwent surgery, and tissue was analyzed for IL-5, IFN-gamma, IL-17A, TNF-alpha, IL-22, IL-1 beta, IL-6, IL-8, eosinophilic cationic protein, myeloperoxidase, TGF-beta 1, IgE, Staphylococcus aureus enterotoxin-specific IgE, and albumin. We used partition-based clustering. Results: Clustering of 173 cases resulted in 10 clusters, of which 4 clusters with low or undetectable IL-5, eosinophilic cationic protein, IgE, and albumin concentrations, and 6 clusters with high concentrations of those markers. The group of IL-5-negative clusters, 3 clusters clinically resembled a predominant chronic rhinosinusitis without nasal polyps (CRSsNP) phenotype without increased asthma prevalence, and 1 cluster had a T(H)17 profile and had mixed CRSsNP/CRSwNP. The IL-5-positive clusters were divided into a group with moderate IL-5 concentrations, a mixed CRSsNP/CRSwNP and increased asthma phenotype, and a group with high IL-5 levels, an almost exclusive nasal polyp phenotype with strongly increased asthma prevalence. In the latter group, 2 clusters demonstrated the highest concentrations of IgE and asthma prevalence, with all samples expressing Staphylococcus aureus enterotoxin-specific IgE. Conclusion: Distinct CRS clusters with diverse inflammatory mechanisms largely correlated with phenotypes and further differentiated them and provided a more accurate description of the inflammatory mechanisms involved than phenotype information only

    Differential protease content of mast cells and the processing of IL-33 in Alternaria alternata induced allergic airway inflammation in mice

    Get PDF
    BackgroundRecent in vitro studies strongly implicated mast cell-derived proteases as regulators of IL-33 activity by enzymatic cleavage in its central domain. A better understanding of the role of mast cell proteases on IL-33 activity in vivo is needed. We aimed to compare the expression of mast cell proteases in C57BL/6 and BALB/c mice, their role in the cleavage of IL-33 cytokine, and their contribution to allergic airway inflammation.ResultsIn vitro, full-length IL-33 protein was efficiently degraded by mast cell supernatants of BALB/c mice in contrast to the mast cell supernatants from C57BL/6 mice. RNAseq analysis indicated major differences in the gene expression profiles of bone marrow-derived mast cells from C57BL/6 and BALB/c mice. In Alternaria alternata (Alt) - treated C57BL/6 mice the full-length form of IL-33 was mainly present, while in BALB/c mice, the processed shorter form of IL-33 was more prominent. The observed cleavage pattern of IL-33 was associated with a nearly complete lack of mast cells and their proteases in the lungs of C57BL/6 mice. While most inflammatory cells were similarly increased in Alt-treated C57BL/6 and BALB/c mice, C57BL/6 mice had significantly more eosinophils in the bronchoalveolar lavage fluid and IL-5 protein levels in their lungs than BALB/c mice.ConclusionOur study demonstrates that lung mast cells differ in number and protease content between the two tested mouse strains and could affect the processing of IL-33 and inflammatory outcome of Alt -induced airway inflammation. We suggest that mast cells and their proteases play a regulatory role in IL-33-induced lung inflammation by limiting its proinflammatory effect via the IL-33/ST2 signaling pathway

    Abstracts from the 11th Symposium on Experimental Rhinology and Immunology of the Nose (SERIN 2017)

    Get PDF
    corecore