212 research outputs found
Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock.
INTRODUCTION: Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis.
METHODS: We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock.
RESULTS: In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C.
CONCLUSIONS: Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis
Clinical Trial Design - Effect of Prone Positioning on Clinical Outcomes in Infants and Children With Acute Respiratory Distress Syndrome
Purpose
This paper describes the methodology of a clinical trial of prone positioning in pediatric patients with acute lung injury (ALI). Nonrandomized studies suggest that prone positioning improves oxygenation in patients with ALI/acute respiratory distress syndrome without the risk of serious iatrogenic injury. It is not known if these improvements in oxygenation result in improvements in clinical outcomes. A clinical trial was needed to answer this question.
Materials and Methods
The pediatric prone study is a multicenter, randomized, noncrossover, controlled clinical trial. The trial is designed to test the hypothesis that at the end of 28 days, children with ALI treated with prone positioning will have more ventilator-free days than children treated with supine positioning. Secondary end points include the time to recovery of lung injury, organ failure–free days, functional outcome, adverse events, and mortality from all causes. Pediatric patients, 42 weeks postconceptual age to 18 years of age, are enrolled within 48 hours of meeting ALI criteria. Patients randomized to the prone group are positioned prone within 4 hours of randomization and remain prone for 20 hours each day during the acute phase of their illness for a maximum of 7 days. Both groups are managed according to ventilator protocol, extubation readiness testing, and sedation protocols and hemodynamic, nutrition, and skin care guidelines.
Conclusions
This paper describes the process, multidisciplinary input, and procedures used to support the design of the clinical trial, as well as the challenges faced by the clinical scientists during the conduct of the clinical trial
Identification of candidate serum biomarkers for severe septic shock-associated kidney injury via microarray
Exuberant fibroblast activity compromises lung function via ADAMTS4
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes—in particular the ECM protease ADAMTS4—and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections
Publisher Correction: Exuberant fibroblast activity compromises lung function via ADAMTS4 (Nature, (2020), 587, 7834, (466-471), 10.1038/s41586-020-2877-5)
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. An amendment to this paper has been published and can be accessed via a link at the top of the paper
Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model
Background
We previously derived and validated a risk model to estimate mortality probability in children with septic shock (PERSEVERE; PEdiatRic SEpsis biomarkEr Risk modEl). PERSEVERE uses five biomarkers and age to estimate mortality probability. After the initial derivation and validation of PERSEVERE, we combined the derivation and validation cohorts (n = 355) and updated PERSEVERE. An important step in the development of updated risk models is to test their accuracy using an independent test cohort.
Objective
To test the prognostic accuracy of the updated version PERSEVERE in an independent test cohort.
Methods
Study subjects were recruited from multiple pediatric intensive care units in the United States. Biomarkers were measured in 182 pediatric subjects with septic shock using serum samples obtained during the first 24 hours of presentation. The accuracy of PERSEVERE 28-day mortality risk estimate was tested using diagnostic test statistics, and the net reclassification improvement (NRI) was used to test whether PERSEVERE adds information to a physiology-based scoring system.
Results
Mortality in the test cohort was 13.2%. Using a risk cut-off of 2.5%, the sensitivity of PERSEVERE for mortality was 83% (95% CI 62–95), specificity was 75% (68–82), positive predictive value was 34% (22–47), and negative predictive value was 97% (91–99). The area under the receiver operating characteristic curve was 0.81 (0.70–0.92). The false positive subjects had a greater degree of organ failure burden and longer intensive care unit length of stay, compared to the true negative subjects. When adding PERSEVERE to a physiology-based scoring system, the net reclassification improvement was 0.91 (0.47–1.35; p<0.001).
Conclusions
The updated version of PERSEVERE estimates mortality probability reliably in a heterogeneous test cohort of children with septic shock and provides information over and above a physiology-based scoring system
Identification of pediatric septic shock subclasses based on genome-wide expression profiling
<p>Abstract</p> <p>Background</p> <p>Septic shock is a heterogeneous syndrome within which probably exist several biological subclasses. Discovery and identification of septic shock subclasses could provide the foundation for the design of more specifically targeted therapies. Herein we tested the hypothesis that pediatric septic shock subclasses can be discovered through genome-wide expression profiling.</p> <p>Methods</p> <p>Genome-wide expression profiling was conducted using whole blood-derived RNA from 98 children with septic shock, followed by a series of bioinformatic approaches targeted at subclass discovery and characterization.</p> <p>Results</p> <p>Three putative subclasses (subclasses A, B, and C) were initially identified based on an empiric, discovery-oriented expression filter and unsupervised hierarchical clustering. Statistical comparison of the three putative subclasses (analysis of variance, Bonferonni correction, <it>P </it>< 0.05) identified 6,934 differentially regulated genes. K-means clustering of these 6,934 genes generated 10 coordinately regulated gene clusters corresponding to multiple signaling and metabolic pathways, all of which were differentially regulated across the three subclasses. Leave one out cross-validation procedures indentified 100 genes having the strongest predictive values for subclass identification. Forty-four of these 100 genes corresponded to signaling pathways relevant to the adaptive immune system and glucocorticoid receptor signaling, the majority of which were repressed in subclass A patients. Subclass A patients were also characterized by repression of genes corresponding to zinc-related biology. Phenotypic analyses revealed that subclass A patients were younger, had a higher illness severity, and a higher mortality rate than patients in subclasses B and C.</p> <p>Conclusion</p> <p>Genome-wide expression profiling can identify pediatric septic shock subclasses having clinically relevant phenotypes.</p
Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock
Frequency, Characteristics and Complications of COVID-19 in Hospitalized Infants
BACKGROUND: Previous studies of severe acute respiratory syndrome coronavirus 2 infection in infants have incompletely characterized factors associated with severe illness or focused on infants born to mothers with coronavirus disease 2019 (COVID-19). Here we highlight demographics, clinical characteristics and laboratory values that differ between infants with and without severe acute COVID-19. METHODS: Active surveillance was performed by the Overcoming COVID-19 network to identify children and adolescents with severe acute respiratory syndrome coronavirus 2-related illness hospitalized at 62 sites in 31 states from March 15 to December 27, 2020. We analyzed patients >7 days to <1 year old hospitalized with symptomatic acute COVID-19. RESULTS: We report 232 infants >7 days to <1 year of age hospitalized with acute symptomatic COVID-19 from 37 US hospitals in our cohort from March 15 to December 27, 2020. Among 630 cases of severe COVID-19 in patients >7 days to <18 years old, 128 (20.3%) were infants. In infants with severe illness from the entire study period, the median age was 2 months, 66% were from racial and ethnic minority groups, 66% were previously healthy, 73% had respiratory complications, 13% received mechanical ventilation and <1% died. CONCLUSIONS: Infants accounted for over a fifth of children <18 years of age hospitalized for severe acute COVID-19, commonly manifesting with respiratory symptoms and complications. Although most infants hospitalized with COVID-19 did not suffer significant complications, longer term outcomes remain unclear. Notably, 75% of infants with severe disease were <6 months of age in this cohort study period, which predated maternal COVID-19 vaccination, underscoring the importance of maternal vaccination for COVID-19 in protecting the mother and infant
- …
