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Differential expression of the nuclear-encoded
mitochondrial transcriptome in pediatric septic
shock
Scott L Weiss1,2, Natalie Z Cvijanovich3, Geoffrey L Allen4, Neal J Thomas5, Robert J Freishtat6, Nick Anas7,
Keith Meyer8, Paul A Checchia9, Thomas P Shanley10, Michael T Bigham11, Julie Fitzgerald1, Sharon Banschbach12,
Eileen Beckman12, Kelli Howard12, Erin Frank12, Kelli Harmon12 and Hector R Wong12,13*

Abstract

Introduction: Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune
dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for
several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell
mitochondrial transcriptome in pediatric sepsis.

Methods: We conducted a focused analysis using a multicenter genome-wide expression database of 180
children ≤10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood
within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using
a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed
genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock.

Results: In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls,
including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway
was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron
transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins
highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected
to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially
regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and
mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C.

Conclusions: Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded
mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as
across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important
mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.
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Introduction
Septic shock is a leading cause of morbidity and mortality
in the pediatric intensive care unit (PICU) [1,2]. With
improved therapies to reverse shock, progressive multi-
organ failure and secondary infection from acquired
immunoparalysis are now the main antecedents to
sepsis-associated death [3,4]. Increasing evidence supports
a role for mitochondrial bioenergetic dysfunction in the
pathobiology of organ injury and immune dysregulation in
sepsis [5-7].
Circulating blood cells from critically ill patients with

septic shock exhibit decreased oxidative respiration,
electron chain complex activity, mitochondrial turnover,
and mitochondrial membrane potential [8-12]. Blood is
an easily accessible tissue that can be used to directly
measure mitochondrial dysfunction in immune cells and
may reflect a systemic process affecting other vital
organs. Mitochondrial dysfunction in blood cells has been
associated with severity of illness, organ dysfunction,
mortality, and immunoparalysis in human sepsis [8-12],
including children [13]. Differential expression of
mitochondrial genes in blood cells has been reported
for several diseases in which bioenergetic failure is a
postulated mechanism [14-16], and injection of endotoxin
has been shown to cause widespread suppression of genes
encoding for mitochondrial ATP production and protein
synthesis within human leukocytes [17]. However,
there are no data about the blood cell mitochondrial
transcriptome in pediatric sepsis. Identification of mito-
chondrial genomic changes within blood cells could provide
clinically relevant biomarkers, offer insight into biological
mechanisms, and inform therapeutic targets related to mito-
chondrial bioenergetic dysfunction for children with sepsis.
While mitochondria contain their own circular genome,

the majority of the mitochondrial proteins comprising sub-
units of the electron transport system (ETS) are encoded
by nuclear genes, including 38/45 for complex I, 4/4 for
complex II, 10/11 for complex III, 10/13 for complex IV,
and 17/19 for complex V (ATP synthase). In addition, all of
the 79 known mitochondrial ribosomal proteins (MRPs)
are encoded by the nuclear genome [18,19]. These ETS and
ribosomal proteins are synthesized within the cytoplasm
and then imported into the mitochondria.
Over the last decade, we have generated an extensive

genome-wide expression database of children with septic
shock drawn from multiple centers in the U.S. [20]. The
database has enabled the discovery of gene expression-based
subclasses of pediatric septic shock [21-23], stratification
biomarkers [24-31], diagnostic biomarkers [32-35], and
novel therapeutic targets [36-42]. Here, we mined the
database to test the hypothesis that expression of whole
blood-derived nuclear-encoded mitochondrial genes will
be differentially regulated between pediatric patients with
septic shock and nonseptic controls within the first 24

hours of presentation to the PICU. We further hypothe-
sized that nuclear-encoded mitochondrial genes would be
differentially regulated across genotypic and phenotypic
distinct subclasses of pediatric septic shock. We tested
these hypotheses using a focused analytical approach
in which we restricted the working gene list to 296
nuclear-encoded mitochondrial genes, as previously
reported by Lunnon et al. [14].

Methods
Patients and data collection
The study protocol was approved by the Institutional
Review Boards of each participating institution: Cincinnati
Children’s Hospital Medical Center, The Children’s
Hospital of Philadelphia, University of California Benioff
Children’s Hospital Oakland, Penn State Hershey Children’s
Hospital, Children’s Mercy Hospital, Children’s Hospital of
Orange County, Akron Children’s Hospital, Children’s
National Medical Center, Miami Children’s Hospital, Texas
Children’s Hospital, and CS Mott Children’s Hospital at the
University of Michigan. Children ≤10 years of age admitted
to the PICU who met pediatric-specific criteria for septic
shock were eligible for enrollment [43]. Age-matched
controls were recruited from the ambulatory departments
of participating institutions using published inclusion
and exclusion criteria [36]. All subjects and data collection
methods have been previously reported in microarray-
based studies addressing hypotheses entirely different from
that of the current study and details of the study protocol
were previously published [21-23,32,33,36,37,44-48]. All
microarray data have been deposited in the National Center
for Biotechnology (NCBI) Gene Expression Omnibus
(Accession numbers: GSE26440 and GSE26378).

RNA extraction and microarray hybridization
Written informed consent was obtained from the parents
or legal guardians of all septic shock and control subjects
to participate in this study. Blood samples were obtained
within the first 24 hours of meeting criteria for septic
shock. Total RNA was isolated from whole blood
using the PaxGene™ Blood RNA System (PreAnalytiX,
Qiagen/Becton Dickson, Valencia, CA, USA). Microarray
hybridization was performed as previously described using
the Human Genome U133 Plus 2.0 GeneChip (Affymetrix,
Santa Clara, CA, USA) [36].

Data analysis
We analyzed existing, normalized microarray data. The
original analyses were performed using one patient
sample per chip. Image files were captured using an
Affymetrix GeneChip Scanner 3000. Raw data files (.CEL)
were subsequently preprocessed using robust multiple-array
average (RMA) normalization and GeneSpring GX 7.3
software (Agilent Technologies, Palo Alto, CA, USA).
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All signal intensity-based data were used after RMA
normalization, which specifically suppresses all but
significant variation among lower intensity probe sets
[49]. All chips representing septic shock samples were
then normalized to the respective median values of controls
on a per gene basis.
Differences in mRNA abundance between the study

groups were determined using analysis of variance
(ANOVA) and corrections for multiple comparisons
using a Benjamini-Hochberg false discovery rate (FDR) of
1%. We did not include predetermined fold expression
filters in the analysis because the biological implications of
a specific threshold change in gene expression are not
clear. Thus, in order to account for the possibility that
even a modest change in expression within a set of genes
from a common metabolic pathway could yield dramatic
variability in flux through that pathway [50], we considered
all statistical differences in gene expression using the 1%
FDR to be significant in this analysis. For clarity, further
details regarding microarray data analysis and gene list
generation will be provided in the Results section.
Gene lists of differentially regulated genes were analyzed

using the Ingenuity Pathways Analysis (IPA) application
(Ingenuity Systems, Redwood City, CA, USA) to explore
potential associations with specific domains of mitochon-
drial function [44,47,48]. IPA is a database generated from
peer-reviewed scientific publications that provides a tool for
discovery of signaling pathways and gene networks within
the uploaded gene lists. Adjunct analyses of gene lists were
conducted using the ToppGene application [51].
Gene expression mosaics representing the expression

patterns of differentially regulated genes were generated
using the Gene Expression Dynamics Inspector (GEDI)
[22,23,52,53]. The signature graphical outputs of GEDI
are expression mosaics that give microarray data a
‘face’ that is intuitively recognizable via human pattern
recognition. The algorithm for creating the mosaics is a
self-organizing map that enables use of human pattern
recognition to perform a global analysis of complex
genomic data [54].
Ordinal and continuous clinical variables not nor-

mally distributed were analyzed via ANOVA on Ranks.
Dichotomous clinical variables were analyzed using a
chi-square test (SigmaStat Software, Systat Software,
Inc., San Jose, CA, USA).

Results
Differential regulation of nuclear-encoded mitochondrial
genes in patients with septic shock versus healthy
controls
One hundred and eighty pediatric subjects with septic
shock and 53 healthy pediatric controls were available for
analysis. Table 1 provides the demographic characteristics
of the two study groups.

To determine which mitochondrial genes were differ-
entially regulated between patients with septic shock and
controls, we conducted an ANOVA starting with 296
nuclear-encoded mitochondrial genes. One hundred and
eighteen of the 296 nuclear-encoded mitochondrial genes
(40%) were differentially regulated between the two study
groups, including 48 upregulated and 70 downregulated
in subjects with septic shock. The list of all 118 genes is
provided in Table S1 in Additional file 1.
Since limiting the starting gene list for this analysis to

the 296 nuclear-encoded mitochondrial genes is a potential
source of bias, we conducted an identical analysis starting
with all available genes on the array (54,675). This analysis
yielded 18,429 differentially regulated genes between septic
shock and controls, indicating that the expected rate of dif-
ferential gene expression is 34% when all genes on the
array are considered. Thus, the observed rate of 40% differ-
entially regulated genes when considering only the 296
nuclear-encoded mitochondrial genes is greater than the
expected rate of 34% (P = 0.025, chi-square). This suggests
that our results were not simply due to bias introduced by
restricting the analysis to the mitochondrial genes.
To visualize the biological function of the 118 differen-

tially regulated genes, we uploaded the gene list to the IPA
platform and focused the data output on canonical
pathways and gene networks. The top scoring canonical
pathway was ‘oxidative phosphorylation’. Figure 1 illustrates
the differential regulation of the 51 genes correspond-
ing to the oxidative phosphorylation pathway, which
were generally downregulated (that is the degree of
green intensity relative to red intensity) in the subjects
with septic shock relative to controls (see Table S2 in
Additional file 2 for complete gene list).
The top two gene networks from the IPA analysis are

shown in Figures 2 and 3, with gene nodes being colored
based on the degree of increased (red) or decreased
(green) expression in subjects with septic shock relative

Table 1 Subject demographics

Variable Controls Septic shock

(n = 53) (n = 180)

Age, yearsa 2.2 (0.7 - 4.8) 2.4 (0.9 - 6.3)

Male sex, n (%) 31 (58) 109 (61)

Race, n (%)

Caucasian 33 (62) 119 (66)

African American 12 (23) 35 (19)

Asian 6 (11) 5 (3)

Native Hawaiian or Other Pacific Islander 0 (0) 1 (1)

American Indian/Alaska Native 0 (0) 2 (1)

Multi-racial 1 (2) 4 (2)

Unknown/unreported 1 (2) 14 (8)
aMedian (interquartile range).
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to controls. The gene network shown in Figure 2 is
composed primarily of MRPs highly connected to the
mitochondrial ETS complex I (nicotinamide adenine
dinucleotide (NADH) dehydrogenase), and most of
these genes are downregulated in septic shock relative
to controls (see Table S3 in Additional file 3 for
complete gene list). Consistent with this finding,
cross-referencing the network genes to the ToppGene
platform returned ‘NADH dehydrogenase activity’ as
the top molecular function. The gene network shown in
Figure 3 is composed of genes encoding for subunits of
ETS complex I, II, and IV that are highly connected
to gene nodes corresponding to the peroxisome
proliferator-activated receptor (PPAR) family (see Table S4 in
Additional file 4 for complete gene list). Cross-referencing
the network genes to the ToppGene platform returned
the nonspecific function of ‘oxidoreductase activity’ as the
top molecular function.

Differential expression of nuclear-encoded mitochondrial
genes across gene expression-based subclasses of
pediatric septic shock
We next determined if the 296 nuclear-encoded mito-
chondrial genes were differentially regulated (ANOVA; 1%
FDR) between septic shock survivors (n = 151) and
nonsurvivors (n = 29). Two of the 296 nuclear-encoded
mitochondrial genes (cytochrome c oxidase subunit VIIb
and NADH dehydrogenase flavoprotein 2, 24 kiloDaltons
(kDa)) were differentially regulated between survivors and
nonsurvivors. Given the relatively few patients that did
not survive, we conducted an alternative analysis in which
we compared patients with a ‘complicated course’ (n = 52;
defined as patients who either died by 28 days or had

persistence of two or more organ failures on day 7 of
septic shock) to patients without a complicated course
(n = 128) [29,31,55]. Three of the 296 genes (cytochrome c
oxidase subunit VIIb; NADH dehydrogenase flavoprotein
2, 24 kDa; and NADH dehydrogenase 1β subcomplex, 6,
17 kDA) were differentially regulated between patients
with and without a complicated course.
We previously reported and validated three gene

expression-based subclasses (groups A, B, and C) of
pediatric septic shock having clinically significant
phenotypic differences [21-23]. The subclass-defining
genes correspond to adaptive immunity, glucocorticoid
receptor signaling, and PPARα signaling. Because the
gene network shown in Figure 3 contained highly con-
nected gene nodes corresponding to the PPAR family,
we next determined if the 296 nuclear-encoded mito-
chondrial genes were differentially regulated across
groups A, B, and C.
The clinical and demographic data for the patients in

septic shock groups A (n = 54), B (n = 73), C (n = 53)
are shown in Table 2. Patients in group A had a higher
mortality rate, pediatric risk of mortality (PRISM) score,
pediatric sepsis biomarker risk model (PERSEVERE)-based
mortality risk, and maximum number of organ failures
compared to patients in groups B and C. Among the
patients with available serum lactate data, group A patients
had higher median lactate concentrations at study
entry compared to groups B and C. There were also
some intergroup differences with respect to age, white
blood cell counts, and exposure to corticosteroids.
Using a three-group ANOVA with a false discovery rate

of 1%, 162 of the 296 (55%) nuclear-encoded mitochondrial
genes were differentially regulated between groups A, B,

Figure 1 Differential expression of genes corresponding to the oxidative phosphorylation pathway. Differential expression of individual
nuclear-encoded genes corresponding to mitochondrial electron transport system complexes I to V based on false discovery rate of 1%. Red
intensity correlates with increased gene expression and green intensity correlates with decreased gene expression. The 51 genes corresponding
to the oxidative phosphorylation pathway were generally downregulated (that is greater degree of green relative to red intensity) in the subjects
with septic shock relative to controls.
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and C (see Table S5 in Additional file 5 for complete gene
list). As a control for this analysis, we generated a random
list of 296 genes and conducted an identical three-group
ANOVA to determine how many of the randomly selected
genes were differentially regulated between groups A, B,
and C. We conducted 10 iterations of this process and
determined that on average, 118 (± 10 standard deviations)
randomly selected genes were differentially regulated

between the three groups. Thus, based on random
sampling, the expected rate of differentially regulated
genes between the three groups is approximately 40%,
which is significantly lower than the observed rate of 55%
when we focused the analysis to the 296 nuclear-encoded
genes (P <0.001, chi-square).
We next uploaded the values of these 162 genes to the

GEDI platform to construct gene expression mosaics for

Figure 2 Differentially regulated genes corresponding to a gene network composed of mitochondrial ribosomal proteins highly
connected to the mitochondrial electron transport system (ETS) complex I (nicotinamide adenine dinucleotide (NADH) dehydrogenase).
The degree of green intensity in a gene node corresponds to decreased expression and the degree of red intensity in a given gene node
corresponds to increased expression in the subjects with septic shock, relative to controls, respectively. The list of network genes is provided in
Table S3 in Additional file 3.
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the three septic shock subgroups. Figure 4 shows the
respective gene expression mosaics for each subgroup
and provides a global representation of how the 162
nuclear-encoded mitochondrial genes were differentially
expressed across these three groups. Overall, group A
exhibited a greater repression of nuclear-encoded
mitochondrial genes, compared to subgroups B and C, as
evidenced by the greater proportion of blue color intensity.

We next uploaded the 162 mitochondrial gene list to
the IPA platform to visualize biological function. This
analysis yielded ‘oxidative phosphorylation’ as the most
significant canonical pathway rather than a specific
domain of mitochondrial function. Figure 5 illustrates
the expression of these 47 genes (relative to controls)
corresponding to oxidative phosphorylation in each
septic shock subclass (see Table S6 in Additional file 6

Figure 3 Differentially regulated genes corresponding to a gene network having peroxisome proliferator-activated receptor (PPAR)-related
genes as highly connected nodes. The degree of green intensity in a gene node corresponds to decreased expression and the degree of red
intensity in a given gene node corresponds to increased expression in the subjects with septic shock, relative to controls, respectively. The list of
network genes is provided in Table S4 in Additional file 4.
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for complete gene list). Group A exhibited downregulation
(that is the degree of green intensity relative to red intensity)
of genes for all five ETS complexes. In contrast,
group B exhibited upregulation of genes for ETS complex
II, with concomitant downregulation of genes for ETS
complexes I, III, IV, and V; group C exhibited upreg-
ulation of genes for ETS complex III, with concomitant

downregulation of genes for ETS complexes I, II, IV,
and V.

Discussion
In this focused analysis of a comprehensive genomic
expression database, we found that nuclear-encoded
mitochondrial genes are differentially regulated early in

Table 2 Clinical and demographic characteristics of the septic shock subclasses

Variable Group A Group B Group C

(n = 54) (n = 73) (n = 53)

Age, yearsa 1.0 (0.1 - 3.2) 4.5 (1.8 - 8.0)c 2.1 (1.2 - 4.8)

Male sex, n (%) 37 (69) 38 (52) 34 (64)

Comorbid condition, n (%) 20 (37) 36 (49) 20 (38)

Blood counts at time of blood draw

Total WBC count × 103 7.3 (2.4 - 13.6)d 15.9 (9.0 - 23.6) 15.0 (7.8 - 19.2)

% Neutrophils 60 (34 - 78)e 76 (70 - 85) 72 (61 - 81)

% Lymphocytes 33 (13 - 46)d 12 (6 - 22) 18 (9 - 30)

Monocytes 7 (3 - 10) 4 (2 - 8) 6 (3 - 8)

Platelet count × 103 112 (59 - 166) 126 (88 - 228) 183 (67 - 303)

Type of infection, n (%)

Gram-positive bacteria 19 (36) 18 (25) 15 (28)

Gram-negative bacteria 9 (17) 16 (22) 11 (21)

Other organism 3 (6) 4 (5) 6 (11)

Negative cultures 22 (42) 35 (48) 21 (40)

Maximum number of organ failuresa 3 (3 - 4)d 2 (2 - 3) 2 (2 - 2)

PRISM III scorea 19 (12 - 31)d 12 (9 - 18) 15 (8 - 9)

PERSEVERE mortality probability, %b 18.7 (12.4, 25.0)d 10.8 (7.1, 14.5) 6.6 (3.2, 10.0)

Insulin, n (%) 1 (2) 5 (7) 2 (4)

Corticosteroids, n (%) 20 (37) 39 (53) 11 (18)f

Nonsurvivors, n (%) 16 (30)d 9 (12) 4 (8)

Lactate, mmol/La 4.7 (2.4 - 8.3)g 1.9 (1.2 - 3.5) 1.7 (0.9 - 2.8)
aMedian (interquartile range); bmean (95% confidence interval); cP <0.05 compared to groups A and C; dP <0.05 compared to groups B and C; eP <0.05 compared
to group B; fP <0.05 compared to groups A and B; gP <0.05 compared to groups B and C. Incomplete data: 28 group A subjects, 45 group B subjects, and 32
group C subjects had available lactate data. PRISM, pediatric risk of mortality; PERSEVERE, pediatric sepsis biomarker risk model.

Figure 4 Gene Expression Dynamics Inspector-generated mosaics of differentially expressed mitochondrial genes for the three septic
shock subgroups. The 162 genes are depicted along the same coordinates across the three expression mosaics. Red intensity correlates with
increased gene expression and blue intensity correlates with decreased gene expression. Clear differences in color patterns illustrate differential
expression of mitochondrial genes across patient subgroups A, B, and C, with general downregulation in group A. Group A subjects have higher
illness severity, higher mortality, and higher organ failure burden.
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pediatric septic shock compared to healthy controls. We
also compared expression of the nuclear-encoded mito-
chondrial genes across previously defined and validated
subclasses of pediatric septic shock with distinct phenotypic
characteristics. Although these subclasses were defined
primarily by differential expression of genes corresponding
to adaptive immunity, glucocorticoid receptor signaling,
and PPARα signaling, we found that the nuclear-encoded
mitochondrial genes were also differentially regulated across

these subclasses, with a greater degree of repression in the
subclass of patients with the most organ dysfunction and
highest mortality.
Fifty-one nuclear genes encoding subunits of the

mitochondrial ETS complexes were differentially regulated
in blood samples from children with septic shock, with a
greater degree of downregulation overall. These findings
parallel the decrease in leukocyte gene expression for sub-
units of the ETS complexes I to V that occurs four to six

Figure 5 Differential regulation of oxidative phosphorylation genes for the three septic shock subgroups. Differential expression of
individual nuclear-encoded genes across patient subgroups A, B, and C that correspond to mitochondrial electron transport system (ETS)
complexes I to V based on a false discovery rate of 1%. Red intensity correlates with increased gene expression and green intensity correlates with
decreased gene expression. Group A exhibited downregulation (that is greater degree of green intensity relative to red intensity) of genes for all
ETS complexes, whereas group B exhibited upregulation of genes for complex II and group C exhibited upregulation of genes for complex III.
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hours after endotoxin injection in healthy human volun-
teers [17]. The mitochondrial ETS involves over 100 pro-
teins derived from the nuclear and mitochondrial genomes
assembled into five complexes. Although it is difficult to
predict how the sum of the changes we observed might
alter total function of the respiratory chain, our data
raise the notion that genomic influences could affect
mitochondrial oxidative respiration and therefore cellular
bioenergetic and organ function in sepsis. In particular,
the prominence of NADH dehydrogenase activity in the
top gene networks is consistent with decreased complex I
gene expression [56] and activity noted in skeletal muscle
in human adult sepsis [57,58]. Prior studies using blood
samples from patients with sepsis have also demonstrated
altered respiratory chain activity in peripheral blood
mononuclear cells and platelets [9,11,13,59,60].
A similar genome-wide analysis using skeletal muscle

from 17 adult patients with sepsis-induced multi-organ
failure found that 82 mitochondrial genes were differentially
regulated compared to healthy controls (74 upregulated, 8
downregulated) [61]. Decreased ETS enzyme activity was
also observed and attributed to a loss of mitochondrial
content. The authors concluded that deficits in ETS activity
could not be explained by decreased mitochondrial gene
expression because of the overall absence of repression of
mitochondrial genes. However, these patients were
studied later in their septic course when a decrease in
mitochondrial content seems to be most prominent,
as opposed to our study in which patients were studied
in the acute phase when decreased ETS function predomi-
nates. More recently, Carre et al. performed muscle biopsies
early after onset (one to two days) of critical septic illness in
adult patients and observed that an overall decrease in ETS
gene expression was associated with decreased protein
content and activity of ETS complexes I and IV [56].
Concurrent measurements of mitochondrial gene expres-
sion and function are needed to determine if the changes
we observed in mitochondrial gene expression are sufficient
to alter mitochondrial function in blood cells (and
other tissues) in pediatric sepsis. We note, however,
that serum lactate concentrations were highest in group A.
While this suggests a potential association between
downregulation of mitochondrial genes and mitochondrial
dysfunction, these data should be interpreted cautiously
because they are incomplete and represent an indirect,
nonspecific measure of mitochondrial function.
Genes encoding the MRPs were also predominately

downregulated in pediatric septic shock. This finding
should not be construed as specific to mitochondria, as
global downregulation of ribosomal gene transcription may
occur nonspecifically during extreme biological conditions
such as septic shock [17,62]. Similar downregulation of
MRPs has been previously described in blood and
brain tissue from patients with Alzheimer’s disease [14].

Like bacteria and eukaryotic cell cytoplasm, mitochondria
contain their own ribosomes. The MRPs are encoded
in nuclear genes, synthesized in the cytoplasm, and
then imported into mitochondria. MRPs assemble with
mitochondrial-transcribed rRNAs to form two ribosomes
that are responsible for translating the 37 mitochondrial-
encoded genes, including 13 protein subunits critical to the
function of ETS complexes I, III, IV, and V (ATP synthase).
Thus, MRPs play a critical role in mitochondrial protein
synthesis and bioenergetic function [18,19]. Known muta-
tions in MRPs are associated with lactic acidosis, organ dys-
function, and early death [18], and several MRPs (MRPS29,
MRPS30) have been implicated in apoptosis [19]. Moreover,
changes in mitochondrial turnover (including biogenesis,
mitophagy, and fusion/fission) have been associated with
clinical outcomes in sepsis [5,63]. The significant repression
of MRPs in our study points to changes in the mitochon-
drial protein synthesis machinery as one potential mechan-
ism that could lead to mitochondrial dysfunction and
diminished mitochondrial content in sepsis.
The differential regulation of mitochondrial genes across

subclasses of pediatric septic shock supports a link between
mitochondrial gene expression and clinical outcomes,
including organ failure and mortality. These subclasses
were previously identified based on hierarchical clustering,
with patients in group A exhibiting the greatest repression
of genes corresponding to key signaling pathways of the
adaptive immune system, glucocorticoid receptor signaling,
and PPARα signaling [21]. In the current study, patients
in group A also exhibited a greater repression of
nuclear-encoded mitochondrial genes than groups B
and C, especially in ETS complexes II and III. However,
we caution that since we observed minimal differential
regulation of mitochondrial genes when directly compar-
ing survivors and nonsurvivors, or patients with and with-
out a complicated course, we cannot rule out a ‘coupling
effect’ in which changes in mitochondrial gene expression
are enhanced by other biologic pathways that differ
between genomically defined subclasses. Mitochondria are
involved in a variety of cell signaling pathways underlying
the immune response, including cytokine release, inflam-
masome formation, and formation of reactive oxygen
species [64]. It will be important to establish the extent to
which mitochondrial gene expression may truly affect
phenotypic differences in septic shock through its role in
the immune system and other cell signaling pathways
versus more direct effects on cellular bioenergetics.
We note the limitations of our study. First, this was a

post hoc, focused analysis using a limited set of 296
nuclear-encoded mitochondrial genes. To reduce the
likelihood of false-positive results, we used a relatively
stringent FDR of 1% and conducted control analyses to
determine expected rates of differential gene expression
based on either all available genes on the array, or 10
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iterations of analyses based on randomly selected genes. In
both cases, we found that the observed rate of differential
gene expression in mitochondrial genes was greater
than the expected random rate. Nonetheless, our focused
analytical approach does not allow us to conclude that the
pediatric septic shock transcriptome is specifically enriched
for genes corresponding to mitochondrial function. We can
only conclude that if the analytical approach is limited to
nuclear-encoded mitochondrial genes, we find differential
regulation of these genes in children with septic shock, and
across subgroups of patients with septic shock.
Second, sufficient data were available from only one

time point. Although blood sampling within 24 hours of
initial presentation to the PICU with septic shock was
likely to capture maximum clinical acuity, we were
unable to test temporal changes in the mitochondrial
transcriptome with evolution of the septic course. Third,
the data are based on whole blood-derived RNA, which
carries the potential for confounding by differential white
blood cell counts. Although platelet counts did not differ
between the three septic shock subclasses, group A had a
lower total leukocyte count with a greater percentage of
lymphocytes and fewer neutrophils. Lymphocytes have a
relatively lower mitochondrial content than neutrophils,
though how this effects nuclear-encoded mitochondrial
gene expression is not clear [65,66], and have been
shown to have slightly less gene upregulation in sepsis
[67]. However, we have previously shown that whole
blood-derived RNA can yield biologically meaningful data,
gene expression profiles have revealed similar themes in
leukocyte subsets and whole blood [62], and our current
data are consistent with mitochondrial gene expression
profiles from previous laboratory- and clinical-based
studies [17,56,68-70]. Fourth, since concomitant measures
of mitochondrial function were not available we cannot
determine how the observed changes might alter the total
function of respiratory chain and ATP production.
Although the fold change in gene expression was modest
in most cases, our findings were similar to magnitude
of changes in mitochondrial gene expression profiles
observed in prior studies [56,68,71]. However, it also
possible that primary mitochondrial bioenergetic dysfunc-
tion itself leads to changes in nuclear gene expression [72].
Finally, because we used a nuclear gene array platform,
changes in mitochondrial-encoded genes were not included
in this study. These genes are critical to the function of the
ETS and mitochondrial protein synthesis and should be
considered in future studies.

Conclusions
In summary, our focused analysis demonstrated that
nuclear-encoded mitochondrial genes were differentially
regulated early in pediatric septic shock compared to
healthy controls, as well as across genotypic and phenotypic

distinct pediatric septic shock subclasses. Although no
pathophysiologic consequences can be derived directly
from these results, the findings nonetheless provide
support for the hypothesis that differential regulation
of nuclear-encoded mitochondrial genes may be an
important mechanism contributing to alterations in
mitochondrial bioenergetic function in pediatric sepsis.

Key messages

� Nuclear-encoded mitochondrial genes
corresponding to protein subunits of the
mitochondrial ETS and mitochondrial ribosomes
were differentially expressed in children with septic
shock compared to healthy controls.

� Patterns of nuclear-encoded mitochondrial gene
expression differed across three previously validated
gene expression-based subclasses of pediatric septic
shock, with the greatest degree of repression in
patients with the most organ dysfunction and
highest mortality.

� These findings provide the first evidence that the
nuclear genome may be an important mechanism
contributing to alterations in mitochondrial
bioenergetic function within blood cells in pediatric
sepsis.
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