51 research outputs found

    Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis

    Get PDF
    Saturated (SFA) and monounsaturated (MUFA) fatty acids, the most abundant fatty acid species, have many divergent biological effects including the regulation of cell proliferation, programmed cell death and lipid-mediated cytotoxicity. Their distribution is regulated by Stearoyl-CoA Desaturases (SCD), the enzymes that convert SFA into MUFA. A positive correlation between high levels of tissue MUFA and several types of cancer has been reported, but a causal relationship between the function of SCD1, the main human SCD isoform, and cancer development has not yet been firmly established. Here we report that the stable knockdown of SCD1 gene expression in A549 human lung adenocarcinoma cells decreased the ratio MUFA/SFA in total lipids and inhibited the incorporation of glucose into cell lipids. Cell proliferation and anchorage-independent growth were considerably decreased in SCD1-depleted cells, whereas the rate of apoptosis was elevated, with respect to control A549 cells. In addition, phosphorylation of Akt-Ser473 and GSK-3β-Ser9 was found notably impaired in SCD1-ablated A549 cells. Interestingly, the effects of SCD1 blockade on Akt activation, cancer cell growth and apoptosis could not be reversed by exogenously added oleic acid. Remarkably, the reduction of SCD1 expression in lung cancer cells significantly delayed the formation of tumors and reduced the growth rate of tumor xenografts in mice. Our study demonstrates that SCD1 activity regulates Akt activation and determines the rate of cell proliferation, survival and invasiveness in A549 cancer cells and shows, for the first time, that SCD1 is a key factor in the regulation of tumorigenesis in vivo.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La Plat

    Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells

    Get PDF
    Saturated and monounsaturated fatty acids are the most abundant fatty acid species in mammalian organisms, and their distribution is regulated by stearoyl-CoA desaturase, the enzyme that converts saturated into monounsaturated fatty acids. A positive correlation between high monounsaturated fatty acid levels and neoplastic transformation has been reported, but little is still known about the regulation of stearoyl-CoA desaturase in cell proliferation and apoptosis, as well as in cancer development. Here we report that simian virus 40-transformed human lung fibroblasts bearing a knock-down of human stearoyl-CoA desaturase by stable antisense cDNA transfection (hSCDas cells) showed a considerable reduction in monounsaturated fatty acids, cholesterol, and phospholipid synthesis, compared with empty vector transfected-simian virus 40 cell line (control cells). hSCDas cells also exhibited high cellular levels of saturated free fatty acids and triacylglycerol. Interestingly, stearoyl-CoA desaturase-depleted cells exhibited a dramatic decrease in proliferation rate and abolition of anchorage-independent growth. Prolonged exposure to exogenous oleic acid did not reverse either the slower proliferation or loss of anchorage-independent growth of hSCDas cells, suggesting that endogenous synthesis of monounsaturated fatty acids is essential for rapid cell replication and invasiveness, two hallmarks of neoplastic transformation. Moreover, apoptosis was increased in hSCDas cells in a ceramide-independent manner. Finally, stearoyl-CoA desaturase-deficient cells were more sensitive to palmitic acid-induced apoptosis compared with control cells. Our data suggest that, by globally regulating lipid metabolism, stearoyl-CoA desaturase activity modulates cell proliferation and survival and emphasize the important role of endogenously synthesized monounsaturated fatty acids in sustaining the neoplastic phenotype of transformed cells.Instituto de Investigaciones Bioquímicas de La Plat

    Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis

    Get PDF
    Saturated (SFA) and monounsaturated (MUFA) fatty acids, the most abundant fatty acid species, have many divergent biological effects including the regulation of cell proliferation, programmed cell death and lipid-mediated cytotoxicity. Their distribution is regulated by Stearoyl-CoA Desaturases (SCD), the enzymes that convert SFA into MUFA. A positive correlation between high levels of tissue MUFA and several types of cancer has been reported, but a causal relationship between the function of SCD1, the main human SCD isoform, and cancer development has not yet been firmly established. Here we report that the stable knockdown of SCD1 gene expression in A549 human lung adenocarcinoma cells decreased the ratio MUFA/SFA in total lipids and inhibited the incorporation of glucose into cell lipids. Cell proliferation and anchorage-independent growth were considerably decreased in SCD1-depleted cells, whereas the rate of apoptosis was elevated, with respect to control A549 cells. In addition, phosphorylation of Akt-Ser473 and GSK-3β-Ser9 was found notably impaired in SCD1-ablated A549 cells. Interestingly, the effects of SCD1 blockade on Akt activation, cancer cell growth and apoptosis could not be reversed by exogenously added oleic acid. Remarkably, the reduction of SCD1 expression in lung cancer cells significantly delayed the formation of tumors and reduced the growth rate of tumor xenografts in mice. Our study demonstrates that SCD1 activity regulates Akt activation and determines the rate of cell proliferation, survival and invasiveness in A549 cancer cells and shows, for the first time, that SCD1 is a key factor in the regulation of tumorigenesis in vivo.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La Plat

    Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells

    Get PDF
    Saturated and monounsaturated fatty acids are the most abundant fatty acid species in mammalian organisms, and their distribution is regulated by stearoyl-CoA desaturase, the enzyme that converts saturated into monounsaturated fatty acids. A positive correlation between high monounsaturated fatty acid levels and neoplastic transformation has been reported, but little is still known about the regulation of stearoyl-CoA desaturase in cell proliferation and apoptosis, as well as in cancer development. Here we report that simian virus 40-transformed human lung fibroblasts bearing a knock-down of human stearoyl-CoA desaturase by stable antisense cDNA transfection (hSCDas cells) showed a considerable reduction in monounsaturated fatty acids, cholesterol, and phospholipid synthesis, compared with empty vector transfected-simian virus 40 cell line (control cells). hSCDas cells also exhibited high cellular levels of saturated free fatty acids and triacylglycerol. Interestingly, stearoyl-CoA desaturase-depleted cells exhibited a dramatic decrease in proliferation rate and abolition of anchorage-independent growth. Prolonged exposure to exogenous oleic acid did not reverse either the slower proliferation or loss of anchorage-independent growth of hSCDas cells, suggesting that endogenous synthesis of monounsaturated fatty acids is essential for rapid cell replication and invasiveness, two hallmarks of neoplastic transformation. Moreover, apoptosis was increased in hSCDas cells in a ceramide-independent manner. Finally, stearoyl-CoA desaturase-deficient cells were more sensitive to palmitic acid-induced apoptosis compared with control cells. Our data suggest that, by globally regulating lipid metabolism, stearoyl-CoA desaturase activity modulates cell proliferation and survival and emphasize the important role of endogenously synthesized monounsaturated fatty acids in sustaining the neoplastic phenotype of transformed cells.Instituto de Investigaciones Bioquímicas de La Plat

    Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis

    Get PDF
    Saturated (SFA) and monounsaturated (MUFA) fatty acids, the most abundant fatty acid species, have many divergent biological effects including the regulation of cell proliferation, programmed cell death and lipid-mediated cytotoxicity. Their distribution is regulated by Stearoyl-CoA Desaturases (SCD), the enzymes that convert SFA into MUFA. A positive correlation between high levels of tissue MUFA and several types of cancer has been reported, but a causal relationship between the function of SCD1, the main human SCD isoform, and cancer development has not yet been firmly established. Here we report that the stable knockdown of SCD1 gene expression in A549 human lung adenocarcinoma cells decreased the ratio MUFA/SFA in total lipids and inhibited the incorporation of glucose into cell lipids. Cell proliferation and anchorage-independent growth were considerably decreased in SCD1-depleted cells, whereas the rate of apoptosis was elevated, with respect to control A549 cells. In addition, phosphorylation of Akt-Ser473 and GSK-3β-Ser9 was found notably impaired in SCD1-ablated A549 cells. Interestingly, the effects of SCD1 blockade on Akt activation, cancer cell growth and apoptosis could not be reversed by exogenously added oleic acid. Remarkably, the reduction of SCD1 expression in lung cancer cells significantly delayed the formation of tumors and reduced the growth rate of tumor xenografts in mice. Our study demonstrates that SCD1 activity regulates Akt activation and determines the rate of cell proliferation, survival and invasiveness in A549 cancer cells and shows, for the first time, that SCD1 is a key factor in the regulation of tumorigenesis in vivo.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La Plat

    De novo fatty acid synthesis at the mitotic exit is required to complete cellular division

    Get PDF
    Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G2/M to G1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. The rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G2/M despite the presence of abundant fatty acids in the media. Our results suggest that de novo lipogenesis is essential for cell cycle completion. This "lipogenic checkpoint" at G2/M may be therapeutically exploited for hyperproliferative diseases such as cancer.Instituto de Investigaciones Bioquímicas de La Plat

    De novo lipogenesis at the mitotic exit is used for nuclear envelope reassembly/expansion: Implications for combined chemotherapy

    Get PDF
    Mitosis has been traditionally considered a metabolically inactive phase. We have previously shown, however, that extensive alterations in lipids occur as the cells traverse mitosis, including increased de novo fatty acid (FA) and phosphatidylcholine (PtdCho) synthesis and decreased lysophospholipid content. Given the diverse structural and functional properties of these lipids, we sought to study their metabolic fate and their importance for cell cycle completion. Here we show that FA and PtdCho synthesized at the mitotic exit are destined to the nuclear envelope. Importantly, FA and PtdCho synthesis, but not the decrease in lysophospholipid content, are necessary for cell cycle completion beyond G2/M. Moreover, the presence of alternative pathways for PtdCho synthesis renders the cells less sensitive to its inhibition than to the impairment of FA synthesis. FA synthesis, thus, represents a cell cycle-related metabolic vulnerability that could be exploited for combined chemotherapy. We explored the combination of fatty acid synthase (FASN) inhibition with agents that act at different phases of the cell cycle. Our results show that the effect of FASN inhibition may be enhanced under some drug combinations.Fil: Rodriguez Sawicki, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Garcia, Karina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Córsico, Betina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Scaglia, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin

    Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells

    Get PDF
    Saturated and monounsaturated fatty acids are the most abundant fatty acid species in mammalian organisms, and their distribution is regulated by stearoyl-CoA desaturase, the enzyme that converts saturated into monounsaturated fatty acids. A positive correlation between high monounsaturated fatty acid levels and neoplastic transformation has been reported, but little is still known about the regulation of stearoyl-CoA desaturase in cell proliferation and apoptosis, as well as in cancer development. Here we report that simian virus 40-transformed human lung fibroblasts bearing a knock-down of human stearoyl-CoA desaturase by stable antisense cDNA transfection (hSCDas cells) showed a considerable reduction in monounsaturated fatty acids, cholesterol, and phospholipid synthesis, compared with empty vector transfected-simian virus 40 cell line (control cells). hSCDas cells also exhibited high cellular levels of saturated free fatty acids and triacylglycerol. Interestingly, stearoyl-CoA desaturase-depleted cells exhibited a dramatic decrease in proliferation rate and abolition of anchorage-independent growth. Prolonged exposure to exogenous oleic acid did not reverse either the slower proliferation or loss of anchorage-independent growth of hSCDas cells, suggesting that endogenous synthesis of monounsaturated fatty acids is essential for rapid cell replication and invasiveness, two hallmarks of neoplastic transformation. Moreover, apoptosis was increased in hSCDas cells in a ceramide-independent manner. Finally, stearoyl-CoA desaturase-deficient cells were more sensitive to palmitic acid-induced apoptosis compared with control cells. Our data suggest that, by globally regulating lipid metabolism, stearoyl-CoA desaturase activity modulates cell proliferation and survival and emphasize the important role of endogenously synthesized monounsaturated fatty acids in sustaining the neoplastic phenotype of transformed cells.Instituto de Investigaciones Bioquímicas de La Plat

    Metabolismo lipídico en células tumorales: rol de FABP5

    Get PDF
    El cáncer es la principal causa de muerte a nivel mundial. El estudio de los mecanismos que intervienen en el desarrollo del cáncer es importante para la detección de nuevos blancos terapéuticos. Las células cancerosas presentan una reprogramación metabólica direccionada hacia la obtención de biomoléculas necesarias para la duplicación celular. Si bien se demostró la importancia de la síntesis de membranas para la proliferación celular, se desconocen diversos aspectos del metabolismo lipídico en células tumorales. Las proteínas que unen ácidos grasos (FABPs) son proteínas de bajo peso molecular 14- 15kDa, citosólicas que unen ácidos grasos de cadena larga con alta afinidad. Se ha estudiado su estructura, distribución tisular y su mecanismo de transferencia de ácidos grasos, sin embargo, su función aún está en discusión. La existencia de nueve FABPs y la presencia simultánea de más de una isoforma en un tejido sugiere que las mismas difieren en su función. Se propone que podrían transportar ácidos grasos a diferentes compartimentos celulares dirigiéndolos así hacia su oxidación, utilización en síntesis de lípidos complejos y regulación de factores transcripcionales. FABP5, epidermal o de queratinocito, presenta una expresión ubicua. A diferencia de otras isoformas FABP5 ha sido asociada positivamente con la progresión y el desarrollo de ciertos cánceres, en especial próstata y mama. Su función en el metabolismo de los mismos es, sin embargo, desconocida.Facultad de Ciencias Médica

    Metabolismo lipídico en células tumorales : rol de FABP5

    Get PDF
    En las células tumorales se observa una reprogramación del metabolismo hacia la síntesis de macromoléculas necesarias para la duplicación celular. Entre las vías exacerbadas en cáncer se encuentra la síntesis de novo de ácidos grasos. Las proteínas que unen ácidos grasos (FABPs) son proteínas de 14-15kDa, citosólicas que unen ácidos grasos (FA) de cadena larga con alta afinidad. Se ha propuesto que las FABPs podrían transportar FA a diferentes compartimentos celulares dirigiéndolos así hacia su oxidación, utilización en síntesis de lípidos complejos y regulación de factores transcripcionales. FABP5, a diferencia de otras isoformas, ha sido asociada positivamente con la progresión y el desarrollo de ciertos cánceres. Su función en el metabolismo tumoral es, sin embargo, desconocida.Fil: Garcia, Karina. Universidad Nacional de La PlataFil: Corsico, Betina. Universidad Nacional de La PlataFil: Scaglia, Natalia. Universidad Nacional de La Plat
    corecore