27 research outputs found

    Correlational-regression analysis application for the forecast of the specialists with higher education requirement in Russian economy

    Get PDF
    The present study was intended to investigate a hypothesis about the impact of the following parameters: dynamics of gross domestic product, dynamics of fixed assets, dynamics of labour productivity, dynamics of the level of remuneration and dynamics of fixed asset investments on the number of employees with higher education in Russia. The correlational-regression analysis confirmed the influence of dynamics of fixed assets on the number of employees with higher education. Also authors have generated the forecast about future demand for specialists with higher education and dynamics of fixed assets for the period from 2015 to 2025 years

    Population genomics of the Viking world.

    Get PDF
    The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent

    Auxin production and plant growth promotion by Microbacterium albopurpureum sp. nov. from the rhizoplane of leafless Chiloschista parishii Seidenf. orchid

    No full text
    The strains of the genus Microbacterium, with more than 150 species, inhabit diverse environments; plant-associated bacteria reveal their plant growth-promoting activities due to a number of beneficial characteristics. Through the performance of diverse techniques and methods, including isolation of a novel Microbacterium strain from the aerial roots of leafless epiphytic orchid, Chiloschista parishii Seidenf., its morphological and biochemical characterization, chemotaxonomy, phylogenetic and genome analysis, as well as bioassays and estimation of its auxin production capacity, a novel strain of ET2T is described. Despite that it shared 16S rRNA gene sequence similarity of 99.79% with Microbacterium kunmingense JXJ CY 27-2T, so they formed a monophyletic group on phylogenetic trees, the two strains showed clear divergence of their genome sequences. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values of ET2T differed greatly from phylogenetically close JXJ CY 27-2T. Based on the differences being below the threshold for species similarity, together with the unique chemotaxonomic characteristics, strain ET2T represents a novel species of the genus Microbacterium. Several genes, putatively involved in auxin biosynthesis were predicted. This strain revealed obvious plant growth-promoting activities, including diazotrophy and biosynthesis of tryptophan-dependent auxins (indole-3-acetic and indole-3-pyruvic acids). Microbial auxins directly stimulated the rhizogenesis, so that the ET2T-inoculated seeds of wheat, cucumber and garden cress showed evident promotion in their growth and development, both under optimal and under cold stress conditions. Based on phenotypic, chemotypic and genotypic evidences, the strain ET2T belongs to the genus Microbacterium, order Micrococcales, class Actinomycetes, and it represents a novel species, for which the name Microbacterium albopurpureum sp. nov. is proposed, with strain ET2T (VKPM Ac-2212, VKM Ас-2998) as the type strain

    Physiological and Genomic Characterization of Actinotalea subterranea sp. nov. from Oil-Degrading Methanogenic Enrichment and Reclassification of the Family Actinotaleaceae

    No full text
    The goal of the present work was to determine the diversity of prokaryotes involved in anaerobic oil degradation in oil fields. The composition of the anaerobic oil-degrading methanogenic enrichment obtained from an oil reservoir was determined by 16S rRNA-based survey, and the facultatively anaerobic chemoorganotrophic bacterial strain HO-Ch2T was isolated and studied using polyphasic taxonomy approach and genome sequencing. The strain HO-Ch2T grew optimally at 28 °C, pH 8.0, and 1–2% (w/v) NaCl. The 16S rRNA gene sequence of the strain HO-Ch2T had 98.8% similarity with the sequence of Actinotalea ferrariae CF5-4T. The genomic DNA G + C content of strain HO-Ch2T was 73.4%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the genome of strain HO-Ch2T and Actinotalea genomes were 79.8–82.0% and 20.5–22.2%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic, and chemotaxonomic characterization, we propose strain HO-Ch2T (= VKM Ac-2850T = KCTC 49656T) as the type strain of a new species within the genus Actinotalea, with the name Actinotalea subterranea sp. nov. Based on the phylogenomic analysis of 187 genomes of Actinobacteria we propose the taxonomic revision of the genera Actinotalea and Pseudactinotalea and of the family Actinotaleaceae. We also propose the reclassification of Cellulomonas carbonis as Actinotalea carbonis comb. nov., Cellulomonas bogoriensis as Actinotalea bogoriensis comb. nov., Actinotalea caeni as Pseudactinotalea caeni comb. nov., and the transfer of the genus Pseudactinotalea to the family Ruaniaceae of the order Ruaniales

    Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite

    No full text
    Crystal-chemical features of a sulfide-bearing variety of the cancrinite-group mineral balliranoite from the Tuluyskoe lapis lazuli deposit, Baikal Lake area, Siberia, Russia, have been investigated using a multimethodic approach based on infrared (IR), Raman, and electron spin resonance (ESR), as well as ultraviolet, visible and near infrared (UV–Vis–near IR) absorption spectroscopy methods, luminescence spectroscopy, electron microprobe analysis, selective sorption of CO2 and H2O from annealing products, and single-crystal X-ray structure analysis. Holotype balliranoite and its sulfate analogue, davyne, were studied for comparison. The crystal-chemical formula of the studied sample from Tultuyskoe is Na5.4K0.1Ca2.4(Si6Al6O24)Cl2[(CO3)0.7(SO4)0.18S*0.95Cl0.1(H2O)0.16], where the content of the wide zeolite channel is given in square brackets; S* is total sulfide sulfur occurring as disordered S2●−, cis- and trans-S4, S52−, minor S3●−, and HS− groups. The presence of S52− and HS− groups, the absence of CO2 molecules, and the association with pyrrhotite and Fe-free pargasite indicate that the studied sample crystallized under highly reducing, low-temperature conditions, unlike holotype balliranoite whose formation was related to the Somma-Vesuvius volcanic complex, Italy. Irradiation of balliranoite from Tultuyskoe with X-rays results in the transformations of polysulfide groups other than S3●− into S3●− in accordance with the scheme: S52− → S2●− + S3●−; 3S2●− → 2S3●− + e−; S4 + S2●− + e− → 2S3●−; S4 + S2●− + e− → 2S3●−; S4 + S52− + e− → 3S3●− (e− = electron)
    corecore